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ABSTRACT 
 

The Acquisition Management System (AMS) of the Department of Defense 

(DoD) is established to ensure that the needs of the warfighter are fulfilled in the most 

cost-effective manner possible.  The establishment of Key Performance Parameters 

(KPPs) on Operational Requirements Documents (ORDs) ensures that critical measures 

of performance are continuously monitored as the identification of a military requirement 

becomes a fulfilled capability.  Threshold values for KPPs identified during an 

acquisition determine the minimum acceptable level of performance.  Failure to meet the 

threshold level of an individual KPP is grounds for program cancellation.  The Chairman 

of the Joint Chiefs of Staff (CJCS) has mandated that all defense acquisition programs 

should be kept to a maximum of eight for any individual program.  Due to the multi-

faceted aspect of modern military aircraft acquisition programs, frequently there are 

numerous parameters of critical importance.  For this reason, any repetition of measure 

between KPPs must be minimized.  The decision of the Principal Deputy Undersecretary 

of Defense for Acquisition, Technology and Logistics (PUSD (AT&L)) to include fuel 

efficiency as a KPP on all future acquisitions is an unnecessary exercise for military 

aircraft.  This thesis develops a model in which multiple aircraft are examined flying 

different mission profiles carrying different weapon payloads.  Strong relationships 

between factors such as combat radius, payload and on-station endurance versus fuel 

efficiency are demonstrated by regression analysis of the model output.  Consequently, 

any measure of fuel efficiency as a KPP is shown to be redundant.  Furthermore, the 

methodology developed in this thesis may have further uses for the development of 

logistics planning factors for present and future military aircraft applications. 
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EXECUTIVE SUMMARY 
 

In January 2001, the Defense Science Board completed their study entitled “More 

Capable Warfighting Through Reduced Fuel Burden” and made several 

recommendations for ways of improving fuel efficiency within the Department of 

Defense (DoD).  One of their recommendations was that fuel efficiency should be 

included in the Requirements Generation Process and that it should be specifically 

included as a Key Performance Parameter (KPP) on Operational Requirements 

Documents (ORD) for all future DoD acquisitions.   

The Chairman of the Joint Chiefs of Staff (CJCS) has mandated that KPPs should 

be kept to a maximum of no more than eight for all Operational Requirements 

Documents.  Military aircraft acquisitions are Acquisition Category I (ACAT I) and 

involve multi- faceted capabilities.  Key Performance Parameters for such capabilities 

must curtail duplication of measure in order to hold the total number of KPPs for a given 

acquisition program to a minimum.   

This thesis develops a Java model utilizing an interface (Aircraft) to examine 

seven current military aircraft flying different mission profiles, each with different 

weapons payload configurations.  Parameters such as combat radius, on-station 

endurance, and weapons payload are measured for each configuration and mission 

profile.   

Mission radius and on-station endurance are frequently included as KPPs on 

military aircraft acquisitions. Strong relationships exhibited through regression analysis 

of these parameters versus fuel efficiency (measured as a consumption rate) demonstrates 

that fuel efficiency is already measured.  Therefore to include fuel efficiency as a KPP for 

an individual acquisition is a costly duplication of effort.   

Furthermore, the methodology utilized in the Java model developed in this thesis 

could be applied to the development of logistics planning factors for current and future 

weapons platforms.   
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I. INTRODUCTION 

A. OVERVIEW 

The United States consumes approximately 25% of the world’s annual petroleum 

supply – which is more than the next five highest annual oil-consuming nations 

combined.  Within the United States, the Department of Defense (DoD) is the single 

largest user of petroleum.  Much of this petroleum is consumed as aviation fuel for 

military aircraft.  This thesis addresses the development of a measure of effectiveness for 

fuel efficiency and the necessity to include fuel efficiency as a Key Performance 

Parameter for military aircraft acquisition programs.   

 
Figure 1.   U.S. Dependence on Foreign Oil (From: DSB 2001) 

 

In January 2001, the Defense Science Board (DSB) Task Force on Improving 

Fuel Efficiency of Weapons Platforms identified significant problems in accounting for 

fuel consumption within DoD.  In their report entitled “More Capable Warfighting 

Through Reduced Fuel Burden” [DSB 2001] they developed a number of 

recommendations focusing on the improvement of military capabilities through greater 

fuel efficiency.   

US Dependence on Foreign Oil 

Have Oil Use Oil 
•   Saudi Arabia      26% •   US                 25% 
•   Iraq                     10% •   Japan              8% 

•   Kuwait                10% •   China             5% 

•   Iran                     9% •   Russia             4% 

•  Venezuela         6% •   Germany        4% 
•   S.Korea        3% 

•   Russia                 5% •   Italy                3% 
•   Mexico               5% •   France             3% 
•   US                      3% •   England         3% 

The US uses more than the next 5 hi*. liest consuming nations combined. 
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One of their recommendations stated that DoD should explicitly include fuel 

efficiency in requirements and acquisition processes.  Specifically, the DSB 

recommended that fuel efficiency be “translated into quant ifiable and measurable 

performance criteria and inserted into the requirements determination process.  

Operational Requirements Documents (ORDs) must directly address efficiency issues at 

the platform and force levels.  The Task Force recommends that DoD develop and apply 

an efficiency metric for platforms and systems, preferably as a Key Performance 

Parameter” (KPP) [DSB 2001]. 

On February 15, 2001, shortly after the DSB Task Force made its 

recommendations, the Principal Deputy Undersecretary of Defense for Acquisition, 

Technology and Logistics directed that fuel efficiency would be included as a Key 

Performance Parameter on all future Operational Requirements Documents [Oliver 

2001].  This thesis examines the measurement of fuel efficiency for military aircraft and 

relationships with frequently used Key Performance Parameters such as combat radius, 

weapons payload, and on-station endurance.  These parameters are shown to have strong 

correlation with fuel efficiency, and hence any measure of fuel efficiency as a KPP is a 

costly duplication of effort.   

B. BACKGROUND 

The Department of Defense (DoD) uses the Acquisition Management System 

(AMS) to manage all military acquisition programs within the defense resource allocation 

process.  The AMS utilizes a logical structure to develop a capability (weapon system or 

equipment) from an identifiable requirement.  This formal acquisition process utilizes the 

Requirements Generation System (RGS) in conjunction with the AMS to develop all 

weapons systems and equipment currently in use by DoD.   

When a mission need is identified through a Mission Need Statement, it goes 

through a very formal validation and approval process within DoD.  Once approved, the 

need (or idea) becomes part of the AMS as an acquisition program (see Figure 1-2).  The 

AMS is composed of three phases called “milestones” – Milestone A, Milestone B, and 

Milestone C.  At each milestone, a gatekeeper – or Milestone Decision Authority (MDA) 

evaluates the program and determines measures to implement the requirements of the 

next milestone.  As each milestone is reached, additional funding is allocated for the 
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program.  There are different types of acquisitions – based on dollar value of the 

respective program and these are outlined in Chapter II of this thesis.   

 
Figure 2.   How an Idea Becomes a Capability (From: NWC 2002) 
 

In addition to the MNS, another important document essential to the AMS is the 

Operational Requirements Document (ORD).  The ORD is a “living” manuscript that is 

evaluated at each milestone of an acquisition program.  The ORD translates the broad 

operational capability from the MNS to specific performance requirements.  For example, 

the ORD for a typical tactical aircraft acquisition program will list specific performance 

requirements such as: logistics footprint, combat radius, payload, on-station time, etc. 

The specific performance requirements listed within the ORD include 

Performance Parameters and Key Performance Parameters (KPPs).  Regarding these two 

parameters, KPPs are of critical importance.  KPPs are those performance parameters 

established in the ORD considered most essential for successful mission accomplishment 

by the warfighter.  The KPPs are described in terms of threshold and objective values.  

Failure to meet a KPP threshold can cause the MDA to at best delay the program for 

reevaluation and at worst to terminate the program.  Delays in any defense acquisition 

program often equate to substantial increases in total life-cycle costs and should be 
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avoided wherever possible.  Furthermore, termination of an acquisition program results in 

unrecoverable sunk costs.  Depending on which stage of the life cycle the program is 

terminated, these costs can be quite significant.  Therefore, it is of utmost importance to 

consider all aspects of each and every KPP and how they are measured.  Important 

considerations for selecting Key Performance Parameters include: 

• Is it essential for defining the system or required capabilities? 

• Is it oriented to the warfighter? 

• Can it be measured? 

• Is it achievable? 

• Can it be explained by analysis? 

• If the threshold level is not met, is the MDA prepared to cancel the 
program?  [NWC  4-18] 

Before fuel efficiency should be included as a KPP, the above questions must be 

rejoined.  This thesis will address this issue with respect to military aircraft acquisitions.  

Within the field of aviation, the most common measure of fuel efficiency is consumption 

rate.  There are two ways in which fuel consumption rate is measured on aircraft 

performance charts.  Defined as a fuel consumption rate, fuel efficiency can be measured 

in pounds of fuel consumed per flight hour (lbs/hr).  This measure is frequently used 

when one is interested in determining the amount of fuel consumed in-flight regardless of 

the distance covered over ground.  This measure is commonly used on performance 

charts for rotary-wing aircraft.  Another fuel consumption rate commonly used on fixed-

wing aircraft performance charts is specific range.  Specific range (SR) is defined as 

distance units per unit of fuel consumed, and is usually measured in nautical miles per 

pound of fuel (nm/lb).  This measure is frequently used when one is interested in 

measuring the distance covered over ground (vice the length of flight time) per unit mass 

of fuel.  Each of these measures is convertible to the other and each illustrates distinct 

characteristics of the aircraft.   

The decision to use fuel consumption rate as the Measure of Effectiveness (MOE) 

for fuel efficiency of military aircraft acquisition programs meets the KPP definition.  

Fuel consumption rates are quantitative and hence comparison between competing 

airframes would be possible.  Data collected during the Research and Development 
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(R&D) phase of an acquisition program would allow for measurable performance of each 

airframe considered.   

C. OBJECTIVE STATEMENT 

This thesis will evaluate the KPPs used in a typical Operational Requirements 

Document for an aircraft acquisition program and determine if fuel efficiency is already 

measured by these KPPs.  By examining different measures of fuel efficiency (fuel 

consumption rates and specific ranges), the study scrutinizes relationships between these 

measures of fuel efficiency and factors such as combat radius, payload and on-station 

loiter time.  If there are strong relationships between these factors and fuel efficiency, 

then any measure of fuel efficiency in the acquisition process for aircraft is quite possibly 

not a new prospect.  Therefore, the introduction of fuel efficiency as a KPP – while well 

intentioned – is a costly dup lication of effort.   

As the military is faced with continued operating and procurement budget 

reductions, the current acquisition methods can quickly become almost cost-prohibitive 

when an acquisition program is slowed or even cancelled.  The ORD should contain the 

minimum number of KPPs to adequately describe the required capability.  To require that 

all acquisition programs include a KPP for fuel efficiency implies a lack of understanding 

of the true problem.  The Chairman of the Joint Chiefs of Staff has recommended in his 

instruction, CJCSI 3170.01B that the number of KPPs for an acquisition program should 

not exceed eight.   

Figure 3 contains a listing of the KPPs from recent ACAT1 aircraft acquisition 

programs.  Mission radius – which consists of a combat radius for a specified payload – 

is a KPP in each case.   
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Figure 3.   KPPs from Recent ACAT1 Aviation Programs (From: JHU APL 2002) 

 

This study consists of two parts.  In the first part, a Java-based model of various 

military aircraft currently in inventory will replicate these aircraft flying notional mission 

profiles, varying the factors of combat radius, payload and on-station loiter time.  From 

each mission, the fuel consumption rate and specific range will be computed.  The second 

part of the study will consist of regression analysis of fuel efficiency (measured as a 

consumption rate) plotted against the factors combat radius, payload, and on-station time 

to determine correlation.   

For military aircraft, if fuel efficiency is already measured by other KPPs, then to 

include an additional KPP for fuel efficiency is redundant.  This thesis will demonstrate 

through regression analysis that fuel efficiency (quantified as a fuel consumption rate) is 

in fact already measured by all of the aforementioned parameters.   

D. OVERVIEW 

The objective of this thesis is to examine current KPPs used in Operational 

Requirements Documents for military aircraft acquisition programs and determine the 

existence of any relationship with fuel efficiency.  Chapter II contains an introduction of 
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DoD acquisition organization with emphasis on the Acquisition Management System 

(AMS). 

In Chapter III, initial research involves analysis of Standard Aircraft 

Characteristics (SAC) charts.  SAC charts are generated for every military aircraft during 

initial aircraft development and flight-testing.  SAC charts contain pertinent data such as 

power plant specifications, mission descriptions, ordnance capabilities, aircraft basic 

weight, fuel capacities etc.  Among the information contained within each SAC chart are 

various mission profile specifications for which the aircraft is designed.  These mission 

profiles contain information on the ordnance payload carried, the fuel consumed, total 

flight time, combat radius (or radius of action), takeoff weight, maximum speed at 

altitude, etc.  The analysis of the SAC charts in Section A of Chapter III examines each 

mission profile and determines factors such as fuel consumption rate (lbs/hr), combat 

radius and payload in each case.   

Analysis of SAC charts alone is not sufficient to judge variation between mission 

profiles because of the relatively small number of mission profiles contained in each SAC 

chart for each aircraft, and because parameters such as fuel consumed for each mission 

profile for a given aircraft varies significantly between mission profiles.  Thus, after 

exhaustive research of numerous SAC charts, it was determined that a model was needed 

which could run numerous configurations of the same aircraft through the same mission 

profile.  With this greater number of observations (many different configurations of the 

same aircraft flying the same mission profile), analysis of the results are substantially 

enhanced.  Chapter III Section B describes in detail a Java-based model developed to 

allow various military aircraft flying notional mission profiles to be examined.   

The results applying the Java model of Chapter III to classes of aircraft in several 

configurations are analyzed in Chapter IV.  The primary tool in this chapter is regression 

analysis of the factors of fuel consumption rates versus independent variables combat 

radius, payload, and on-station endurance.  Finally, conclusions and recommendations are 

contained in Chapter V.   
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II. THE ACQUISITION PROCESS 

In order to fully appreciate the importance of a KPP within an acquisition 

program, it is essential to understand the function of the DoD acquisition process.  The 

DoD acquisition process is multifaceted with many interacting components, but overall 

has a very coherent structure.  There are two different methods by which the acquisition 

process commences.  The first is through the identification of a requirement, which is 

then developed into a military capability (weapon system or equipment) to fulfill that 

requirement.  The second method is through utilization of current technology that has 

potential for future military application. [NWC 4-1]   

This chapter will address those characteristics of the DoD acquisition process that 

are pertinent to understanding the motivation for this thesis.  DoD Directive 5000.1 states 

that the primary purpose of the defense acquisition system is to acquire quality products 

that satisfy the needs of the operational user with measurable improvements to mission 

accomplishment, in a timely manner, at a fair and reasonable price. [DoD 5000.1]  This 

process begins with the identification of a need.   

Once the need for a specific capability is identified, it is documented in a Mission 

Need Statement (MNS).  The MNS is essentially a very broad description of the required 

capability.  The MNS proceeds through a formal validation process and then enters the 

AMS prior to reaching Milestone A.  The MDA decides whether or not the required 

capability should be implemented as an acquisition program and advance through the 

AMS.  As the program advances, activities occur as part of the acquisition process to 

prepare it for the next milestone.  The MDA has most of the control of an acquisition 

program and the Acquisition Category (ACAT) of the program in question determines the 

designation of the MDA. [NWC 4-5] 

A. ACQUISITION PROGRAMS 

1. ACAT I Programs 

ACAT I programs (Acquisition CATegory I) are the largest and usually most 

complex acquisition programs that warrant the highest level of oversight.  ACAT I 

programs are designated such when the cost of Research, Development, Test and 
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Evaluation (RDT&E) is estimated to exceed $355 million, or the estimated procurement 

exceeds $2.135 billion.  The Under Secretary of Defense for Acquisition, Technology 

and Logistics (USD (AT&L)) will designate the MDA for ACAT I programs as one of 

two choices: 1) himself – USD (AT&L) or 2) the respective DoD component head 

(service secretary or agency head).  If the USD (AT&L) is the MDA, the program is 

designated ACAT ID.  If the DoD component head is designated as the MDA, the 

program is designated ACAT IC. [NWC 4-5]  All major military aircraft acquisition 

programs are ACAT I.   

2. Other Acquisition Programs 

Other acquisition programs include: ACAT IA, ACAT II, and ACAT III.  ACAT 

IA is used to designate acquisition programs that are part of the Major Automated 

Information System (MAIS).  These programs have estimated costs in any single year in 

excess of $30 million, the total program cost is estimated to exceed $120 million, or the 

total life-cycle cost is estimated to exceed $360 million. [NWC 4-6] 

Acquisition programs that do not meet the requirement for ACAT I or ACAT IA 

are deferred to their respective DoD Component Head (e.g. Secretary of the Navy).  The 

Component Head may so designate such programs as ACAT II if he/she feels that 

service- level oversight is warranted.  An ACAT II program has RDT&E costs estimates 

exceeding $135 million or estimated procurement costs in excess of $640 million.  The 

MDA for ACAT II programs is the Component Acquisition Executive. [NWC 4-6] 

ACAT III programs are programs that do not meet the criteria for ACAT I, ACAT 

IA, or ACAT II.  The Component Acquisition Executive designates the MDA to the 

lowest appropriate level. [NWC 4-6] 

B. ACQUISITION RESPONSIBILITIES 

Within DoD acquisition programs, there are several responsibilities delegated to 

various persons and organizational boards.  The Secretary of Defense (SECDEF) has 

overall responsibility and authority for all acquisition programs within DoD.  To assist 

him, the following persons and organizational boards were created: (Note: this list is not 

all- inclusive and only discusses acquisition organizational structure pertinent to this 

thesis). 
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Figure 4.   Acquisition Oversight (From: NWC 2002) 

 
1. Joint Requirements Oversight Council (JROC) 

The JROC assists the Chairman of the Joints Chiefs of Staff (CJCS) in assessing 

joint military requirements to meet the national military strategy.  Among its 

responsibilities, the JROC is the validation and approval authority for Mission Need 

Statements for potential ACAT I and ACAT IA programs.  Once an ACAT I / IA 

program MNS is approved by the JROC, it is forwarded to the Defense Acquisition 

Board (DAB).  As major acquisition programs proceed through the acquisition process, 

the JROC continues to monitor them and assure that they meet the needs of the 

warfighter. [NWC 4-9] 

2. Defense Acquisition Board (DAB) 

This is the senior DoD acquisition review board, composed of senior civilian DoD 

officials and chaired by the USD (AT&L).  The DAB provides explicit recommendations 
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time, recommended courses of action are determined regarding the program’s future 

development. [NWC 4-10] 

3. Defense Resources Board (DRB) 

The DRB is chaired by the Deputy Secretary of Defense (DepSecDef) and 

reviews DoD’s resources in order to advise the SECDEF on major resource allocation 

decisions.  The DRB resolves issues on programs that eventually end up in the 

President’s Budget.  “A DRB review can severely impact the budgeting of major 

acquisition systems as each program must compete with all other programs fo r funding.” 

[NWC 4-10] 

4. Deputy Secretary of Defense (DepSecDef) 

DepSecDef is chairman of the DRB and as such approves funding for all new 

acquisition programs. [NWC 4-11] 

5. Under Secretary of Defense for Acquisition, Technology and Logistics 
(USD (AT&L)) 

USD (AT&L) is the senior acquisition official and is responsible for establishing 

all acquisition policies and procedures for DoD.  He is the Defense Acquisition Executive 

for all ACAT ID programs, is the chairman of the DAB and member of the DRB.  [NWC 

4-12] 

6. Chairman of the Joint Chiefs of Staff (CJCS) 

The CJCS is responsible for assessing military requirements for defense 

acquisition programs and represents the Combatant Commanders (CINCs) regarding 

operational needs. [NWC 4-12] 

C. ACQUISITION DOCUMENTS 

1. Mission Need Statement (MNS) 

As discussed previously, the MNS presents a military operational requirement in 

its simplest form.  It describes the problem in broad terms with little specificity – this 

comes later in the acquisition process.  Anyone within DoD can generate a MNS. 

2. Operational Requirements Document (ORD) 

As described in Chapter I, the ORD is a “living manuscript” which translates the 

broadly defined need from the MNS into specific performance requirements.  The ORD 

defines operational parameters as both Performance Parameters and Key Performance 

Parameters (KPPs).  “These parameters reflect capabilities such as range, speed, 
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probability of kill, platform survivability, weight, etc., and are described in terms of 

objective values (what is desired) and threshold values (what will be accepted). [NWC 4-

17] 

3. Key Performance Parameters (KPPs) 

KPPs are those performance parameters considered most essential to successful 

mission accomplishment.  KPPs for ACAT I and ACAT IA programs are validated by the 

JROC.  The MDA has final approval of all KPPs within an ORD.  KPPs become part of 

the Acquisition Program Baseline (APB).  As stated in Chapter I, failure to meet the 

threshold level of any KPP is grounds for reevaluation or even cancellation of the 

acquisition program by the MDA. [NWC 4-18] 

4. Thresholds and Objectives 

KPPs are defined by threshold and objective values as explained above.  These 

describe the operational goals of the program for performance and cost.  Prior to 

Milestone A, the Program Manager (PM) of an acquisition program proposes threshold 

and objective values for all KPPs, which must be approved by the MDA.  However, the 

PM can refine the threshold and objective values as the program progresses through the 

AMS. [NWC 4-18] 

5. Acquisition Program Baseline (APB) 

This document contains the threshold and objective values for the most important 

cost, schedule, and performance parameters of an acquisition program.  The APB is 

prepared by the PM and submitted to the MDA.  At each milestone decision point the 

APB is reviewed.  Any threshold value not met is grounds for a deviation report by the 

PM and triggers an unscheduled DAB review. [NWC 4-19] 
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III. MODEL DESCRIPTION 

A. INITIAL SAC CHART ANALYSIS 

SAC charts are governed by MIL-P-2203: Military Specification Performance 

Data Report for Standard Aircraft Characteristics Charts for Piloted Aircraft (21 

September 1959).  Figure 5 depicts the cover of the SAC chart for the U.S. Navy T-2B 

Buckeye trainer aircraft.   

 
Figure 5.   Typical SAC Chart Cover Sheet (From: NAVAIR 1970) 
 

Each SAC chart contains a performance summary in which aircraft parameters are 

outlined as they pertain to the specified mission profiles.  Each mission profile has its 

own total fuel consumption, payload, total flight time, combat radius, and range data 

listed in the performance summary.  For each mission, fuel consumption rates (measured 

in either pounds of fuel per flight hour or nautical miles per pound of fuel) can be gleaned 

from this data.  Figure 6 shows an excerpt from the T-2B SAC chart with this data 

highlighted for each of the 4 mission profiles (1–Basic Trainer, 2–Basic Trainer & 

Rockets, 3–Basic Trainer & Gun Packages, and 4–Basic Trainer & Bombs) outlined 

within the SAC.   
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Figure 6.   Excerpt T-2B SAC p. 4 Performance Summary (From: NAVAIR 1970) 

 

The following definitions are useful for interpreting the performance summary of 

SAC charts [MIL-P-2203]: 

• Payload – The load which justifies the mission.  Payload includes cargo, 
personnel other than crew, bombs, rockets, reconnaissance cameras and 
flares, etc; includes ammunition for fighters and gunnery trainers only; 
excludes all fuel except that portion carried by a tanker to be transferred.   

• Combat Radius – The distance attainable on a practicable flight to the 
target and return a distance equal to that flown out, carrying a specific load 
(bombs, cargo, personnel, etc.) to or from the target according to a 
sequence of operations specified under the mission profile diagrams.   

• Combat Range – The distance (including distance covered in climb) 
attainable on a practicable one-way flight carrying load (bombs, cargo, 
etc.) the entire distance. 

• Total Mission Time – Time in air (excludes time before start of initial 
climb and reserve fuel unless otherwise specified and noted). 

In addition to the performance summary, the SAC charts also contain diagrams of 

the mission profiles, showing specific flight evolutions required in the execution of each 

mission.  Essentially, the flight evolutions where fuel is consumed are displayed on the 

mission profile diagrams.  All climb, cruise, loiter, and combat evolutions are shown 

along with their required parameters and detail the fuel used, distance covered over 

ground and time required to complete the evolution.  All cruise, loiter and climb 

evolutions occur at the altitudes specified on the diagram.   
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SAC charts are written with the following assumptions [MIL-P-2203]: 

• Missions are defined in terms of combat radius and combat range 
problems.   

• All flight mission profiles occur under Standard Atmospheric Conditions  
defined by the International Civil Aviation Organization (see Appendix A) 

• All descents are considered “no credit” – specifically no fuel is used and 
no distance is gained during a descent evolution (standard engineering 
practice).   

• For loiter and combat evolutions, no distance is credited but fuel is 
consumed.   

• No credit in distance shall be given for any expenditure of ammunition. 

SAC charts were collected from Naval Air Systems Command (NAVAIR) for 

forty-three different military aircraft.  For each aircraft Type, Model and Series (TMS) 

the respective SAC chart lists specific mission profiles that were developed during the 

initial acquisition and testing of each aircraft.  From each mission profile, payload and 

combat radius are given.  Fuel consumption rate (in lbs per flight hour) is computed as 

follows: 

FHtot
FWldgFWto

BR
)( −

=  

  where: BR = fuel consumption rate (burn rate) 

   FWto = fuel weight at takeoff 

   FWldg = fuel weight at landing 

   FHtot = total flight hours (duration of flight) 
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Figure 7.   Excerpt T-2B SAC p. 8 Mission Profiles (From: NAVAIR 1970) 

 

Initially, each of the mission profiles for an individual aircraft SAC chart were 

examined to determine if any relationships exist between fuel consumption rates and the 

parameters for combat radius and payload.  Figures 8 and 9 are plots of burn rate versus 

combat radius and payload respectively for four different configurations and mission 

profiles for the F-14D Tomcat and for 6 different configurations and mission profiles for 

the F/A-18C Hornet.  These plots are taken from data for each individual aircraft's SAC 

chart.   

GENERAL PURPOSE AND 
ESCORT MISSION 

43,OOOFT      CONFIGURATION 3 

vv   40,500 FT 

LOW ALTITUDE 
ATTACK MISSION 

CONFIGURATION 4 

5000 FT 

39.500 FT                            ,   — ""x\ 

/                                                                               35,000 FT 

•"""                                  ~\    , 

Y                             <&> 
| 165 1 

OPERATION 
Fwl Uted 

itbi.) («■■if (hr»X 
OPERATION 

Fuel U*ed 
41b*.» 

Ditlanc« 
(nml) 

lime 
<hr,.> 

Wo<m-up ond Tolie-o" 
Acc«le*ate to (.11-* Speed 
(5 min Normal Roted 
Th*»i> ot S.L1 370 0 0.063 

Wanr~up end Tafce-o" 
Accelerate to Climto Speed 
(5 min.   *»:'—.;! Ro'ed Thrui' 
at S.L.I 370 0 0.083 

Climb 10 Gull* Ceiling 
o" Maximum Th>uit B90 102 0.347 

Climb *o 5000 'eet ot 
Maximum Ihrutt 85 4 0.017 

' ' -  '.« out ot GUIM 

Ceiling o» ipeed lot 
Mont mum   Rang» 511 133 0.378 

Gviie out ot 5000 'eet ot ipeed 
'of Msximu» Range 1463 161 0.676 

Deieended to 35.000 fett 
tot 20 min combot ("HW 

•_rl (low) expend ooono 631 0 0.333 

Descended »oS.L. U>ite> 
fo>  '0 -oin ot tceed 'e- 
-o>  -iv- endvtance.    D*op Bombt 344 0 0.167 

Climb 'O OuJM Oiling 
ot t/O'-mun Tnru« 760 95 0.316 

Climb to5000'~l ot 
Maximjin   TK«u»l 70 4 0.013 

Ouite bocfc ot Ouiie Coiling 
of ipeed 'or Moiimum Rang« 476 140 0.398 

C~ite bock a> 5000 a 1 
itfto •o'  *»VJ"  I-"- Range 1288 161 0.6)3 

Reierve (20 min at Speed 'of 
Maximbffl Endurance at S. L. 
• 5% Initial F  -1 Lood) 854 0 0.333 

Retetve (20 n»in ot ipeed 
*o> Mo'imum Enduaonce of S.l. 
- 5* MlM F»et load» 872 0 0.333 

Totol 4492 470 i.m Totol 4492 330 1.90? 



19 

 
Figure 8.   F-14D SAC Chart Burn Rate Versus Combat Radius and Payload 

 

 
Figure 9.   F/A-18C SAC Chart Burn Rate Versus Combat Radius and Payload 

 

Figures 8 and 9 demonstrate the weak relationships exhibited between fuel 

efficiency and factors such as combat radius and payload – using data taken from the 

SAC charts.  The small R2 values in addition to the small number of observations for 

these regression plots illustrate the problem of unexplained variance for this data.  Results 

like this are not uncommon for almost all of the SAC chart information.  In fact, the 

adjusted R2 values for three of the four plots above are negative.  At first glance, 

examination of these regression plots could lead one to believe that a KPP for fuel 

efficiency is needed, because it appears to contain information not found in the most 

closely related factors: combat radius, payload, and on-station endurance.   
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radius and payload.  Other ways of examining the SAC Chart data are explored such as 

aggregating the aircraft together based on similar missions.  Using the same procedures 

outlined for the individual aircraft mission profiles; the burn rates for each aircraft type 

and mission profiles are graphed versus the factors of Combat Radius and Payload.  The 

results of this analysis are also inconclusive.  No discernible relationships are readily 

apparent.  The samples contain too many different aircraft flying too many different 

profiles to provide any useful information.   

However, from the initial analysis completed on individual aircraft SAC charts, 

there appears to be credible association - albeit slight - between Burn Rate and the factors 

combat radius and payload.  Although the R2 values for the relationship of Burn Rate 

versus Combat Radius and Payload in each case are not significantly different than zero, 

Figures 8 and 9 show general trends observed in all of the SAC Chart data.  Specifically, 

in each case it was observed that fuel efficiency (measured as consumption rate) was 

negatively related to combat radius and positively related to payload - as one might 

suspect.  A plausible explanation for the small R2 is that the larger variation of the burn 

rates is due to the fact that in each case the aircraft are flying different mission profiles 

and in almost all cases, the total fuel consumed in-flight is not constant across those 

profiles and configurations.   

Further examination of these relationships using a model which can generate a 

greater number of cases with more control over input parameters such as mission profile, 

fuel consumed, and payload provides more robust results.   

B. JAVA MODEL 

Using the respective NATOPS performance graphs for a sample of aircraft 

Type/Model/Series (TMS) that are currently in the U.S. inventory, a Java-based model 

was developed that would replicate different configurations of an individual aircraft on a 

given flight mission profile – similar to profiles found in the SAC charts for respective 

aircraft.  The model consists of a single interface (Aircraft) and individual aircraft 

classes.  The aircraft developed for this model experiment are displayed in Table 1. 
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Table 1.   Aircraft Java Classes 

 

Each of the aircraft Java classes implements the interface, Aircraft, to accomplish 

the execution classes – which are individual mission profiles designed along the same 

methodology used by the SAC charts (in accordance with the assumptions defined by 

MIL-P-2203).  The interface, Aircraft, requires the individual aircraft classes to have 

specific methods.  For example, all aircraft classes have a climb method, which 

determines the time elapsed, fuel used, and distance traveled in a climb from its current 

altitude to a specified altitude.  The methods utilized by Aircraft are listed in Table 2. 

Essentially, the basic methods that are utilized in every mission profile (java 

execution class) are climb, cruise, loiter, combat (called speedyTime  within Aircraft) 

and maximum power cruise (called speedyDist within Aircraft).  There are other 

methods that individual aircraft execute such as hover evolutions (only performed by 

helicopters) and those methods are contained within their respective aircraft classes.  The 

Javadocs for all of the aircraft classes are detailed in Appendix B.   

The key methods used by Aircraft utilize the specific aircraft classes to compute 

the three variables necessary to determine the fuel consumption rate for a given aircraft 

flying a given mission profile.  Those variables are (1) total flight time elapsed, (2) total 

distance traveled, and (3) total fuel used during the specified mission profile outlined in 

the execution class.  Time, distance and fuel are continuously computed and updated 

during each flight evolution.  The flight evolutions (java methods) occurring in the 

execution classes in which flight time, distance and fuel-consumed changes are climb, 

cruise, loiter, speedyTime  and speedyDist.   

TMS Nomenclature Primary Mission Java Class 
AH-1W Cobra USMC Attack Helicopter AH 1W. java             I 
AH-64A Apache US Army Attack Helicopter AH64A.java 
CH-53E Super Stallion Heavy Lift Helicopter CH53E.java 
F-14A Tomcat Strike Fighter F14AStd.java 
F/A-18C Hornet Strike Fighter FA18CStd.java       I 
HH-60H Seahawk Special Warfare HH60H.java 
SH-60B Seahawk Sea Control & Surveillance SH60B.java 
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Table 2.   Method Summary for Aircraft 

 

The key methods used by Aircraft utilize the specific aircraft classes to compute 

the three variables necessary to determine the fuel consumption rate for a given aircraft 

flying a given mission profile.  Those variables are (1) total flight time elapsed, (2) total 

distance traveled, and (3) total fuel used during the specified mission profile outlined in 

the execution class.  Time, distance and fuel are continuously computed and updated 

during each flight evolution.  The flight evolutions (java methods) occurring in the 

execution classes in which flight time, distance and fuel-consumed changes are climb, 

cruise, loiter, speedyTime  and speedyDist.   

1. Java Method: climb 

The method climb takes an argument which is the assigned altitude for the aircraft 

object.  The method first determines the current aircraft altitude and, using the matrices 

Method Summary 
doubled cl: ibfdouble   climbTo) 

Returns the distance traveled over ground, time elapsed, and fuel consumed during a climb flight evolution. 

doubled crmise(double   distance) 
Returns the distance traveled over ground, time elapsed, and fuel consumed during a cruise flight evolution. 

void descend(double descendTo) 
This is a void method which simply changes the aircraft altitude. 

double ijetci ist(double   ale) 
Returns the distance traveled over ground during a climb to the specified altitude (alt). 

i-:-'.;i-le yeto «el(double   ale) 
Returns the fuel consumed during a climb to the specified altitude (alt). 

cjctCl (double    ale) 
Returns the time elapsed during a climb to the specified altitude (alt). 

i:uile get Current ait f) 
Retains altitude (the euiient altitude of the aiiciaft). 

i:-".;i '.t getCmrremtGS() 
Returns grounds peed (the current speed over ground of the aircraft- equal to True Air Speed). 

double ijetCui-i-entGWi j 
Returns grossWt (the current gross weight of the aircraft). 

doubled 

i:uile 

qetLeTelFltPerf(double   ale) 
Returns the array of Maximum Endurance Airspeed (V me). Maximum Endurance FuelFlow(FFme), Maximum 

Range Airspeed (Vmr), Maximum Range Fuel Flow (FFmr), Maximum Continuous Power Airspeed (Vmcp), and 
Maximum Continuous Power Fuel Flow(FFmcp). 

qetST f TCap () 
Returns surfTemp (surface temperature at take off airfield) instance variable. 

double interpolate(double   lower,   double  percent,   double   upper) 
Returns the interpolated value between the lower and upper doubles. 

doubled loiter(double   cime) 
Returns the distance traveled over ground, time elapsed, and fuel consumed during a loiter flight evolution. 

doubled speedyDist(double   diseance) 
Returns the distance traveled over ground, time elapsed, and fuel consumed during a speedy flight evolution 

where distance over ground is the method argument. 

doubled speedvTise(double   cime) 
Returns the distance traveled over ground, time elapsed, and fuel consumed during a speedy flight evolution 

where time elapsed is the method argument 
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within the specific aircraft class, then determines the flight time elapsed, distance 

covered, and fuel consumed in the climb evolution.  The variables (time, distance and 

fuel) are direct table look-up values based on altitude, aircraft gross weight, outside air 

temperature (for the helicopters), and drag index (for the fixed wing aircraft).  The 

matrices for these variables were developed from the NATOPS climb performance 

graphs for each respective aircraft.  The climb method returns an array of time elapsed, 

distance traveled, and fuel consumed during the entire climb evolution. 

For example, given an AH-1W with gross weight of 14,000 lbs executing a climb 

from sea level to 6,000 feet under standard atmospheric conditions, the time elapsed, 

distance traveled and fuel consumed during the climb is approximately three minutes, 

four nautical miles and fifty-four pounds of JP-5 jet fuel respectively (see Figure 10). 

 
Figure 10.   AH-1W Climb Performance (From: NAVAIR 2001) 

MODEL: AH-1W 
DATE: 2 NOVEMBER 1985 
DATA BASIS: PRELIMINARY FLIGHT TEST 

CLIMB PERFORMANCE ENGWE:T700-GE-4O1 
FUEL GRADE: JP-4/JP-5 
FUEL DENSITY:6ö/6.8 LB'GAL 

PRESSURE ALTITUDE- 
--1000 FT 
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2. Java Methods: loiter, speedyTime, cruise and speedyDist 

The methods loiter and speedyTime  both take elapsed time as the argument for 

the flight evolution.  Both of these flight evolutions occur over a specified amount of 

time.  The loiter method is used to model flight performance where on-station time is 

measured – where the amount of time spent airborne is the objective.  The speedyTime  

method is used to model air combat situations and evasive maneuvering where time 

rather than distance traveled is the crucial element of that segment of the mission profile. 

The methods cruise and speedyDist both take distance trave led as the argument 

for the respective flight evolution.  Both of these flight evolutions occur over a specified 

distance.  The cruise method is used to model flight performance during level flight from 

one geographic point to another.  The speedyDist method models the same flight 

performance – except that the power setting is increased to maximum continuous.   

The following assumptions apply to these methods: 

• Altitude remains constant during these flight evolutions (cruise, loiter, 
speedyTime and speedyDist) 

• All loiter flight evolutions occur at maximum endurance airspeed (VME) 
and fuel flow (FFME) 

• All cruise flight evolutions occur at maximum range airspeed (VMR) and 
fuel flow (FFMR) 

• All speedyTime and speedyDist flight evolutions occur at maximum 
continuous power airspeed (VMCP) and fuel flow (FFMCP) 

These last three assumptions presuppose that the aircraft is optimally flown in 

light of the continuously changing gross weight of the aircraft as a result of the constant 

fuel consumption.  As the gross weight of the aircraft changes, the optimal airspeed for 

the given conditions (altitude, outside air temperature, drag index, etc.) will also change. 

For example, when the mission profile calls for remaining on station, the loiter 

method is employed.  During this loiter flight evolution; the gross weight of the aircraft 

is reduced as fuel is consumed.  Consequently, the optimum airspeed and fuel flow for 

maximum endurance conditions changes.  The airspeed and fuel flow must be changed 

accordingly to maintain optimal flight characteristics.  The Java model accounts for this 

by updating the maximum endurance airspeed and fuel flow using a “stepwise” 
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technique.  A “for” loop within the loiter method updates the incremental changes in 

gross weight and re-computes the optimal airspeed and fuel flow using a table look-up 

technique similar to that used in the climb method.   

Figure 11 shows a level flight performance chart for the HH-60H Seahawk 

helicopter.  For this example, an HH-60H with a gross weight of 18,000 lbs, flying at 

4,000 feet pressure altitude with an outside air temp (OAT) of 30 degrees centigrade will 

have the following optimal flight parameters: 

• Maximum endurance airspeed (VME) ≅ 77 KTAS (Knots True Air Speed) 

• Maximum endurance fuel flow (FFME) ≅ 830 lbs/hr (pounds per hour) 

• Maximum range airspeed (VMR) ≅ 133 KTAS 

• Maximum range fuel flow (FFMR) ≅ 1,098 lbs/hr 

• Maximum continuous power airspeed (VMCP) ≅ 143 KTAS 

• Maximum continuous power fuel flow (FFMCP) ≅ 1,220 lbs/hr 

 

 
Figure 11.   HH-60H Level Flight Performance (NAVAIR 2001) 

LEVEL FLIGHT PERFORMANCE 
MODEL: HHfiOH 
DATE: DECEMBER 1994 100% Nr PRESSURE ALT: 4000 FT 
DATA BASIS: FLIGHT TEST 

ENGINES:(2)T700-GE401C 
FUEL GRADE: JP4,JP5,JP8 
FUEL DENSITY: 6.5,6.8,6.8 LB/GAL 

30 C TRUE AIRSPEED - KTS PLACARD TORQUE LIMIT = 98% 
0     10    20    30     40     50      60     70     80      90     100     110     120     130    140     150     160    170 
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The graph featured in Figure 11 is one of many such graphs for the HH-60H 

identifying specific flight parameters (airspeeds and fuel consumption rates) for different 

altitudes and air temperatures.  Each of these graphs is represented by a matrix within the 

individual aircraft Java class (in this case HH60H).  Each matrix has the optimal airspeed 

and fuel consumption rates classified by gross weight.  Interpolation between the gross 

weight lines provides a close approximation of the actual optimal airspeed and fuel 

consumption rate.  The gross weight is reduced as fuel is consumed – and consequently 

the optimal airspeeds and fuel consumption rates also change.  The loiter, cruise, 

speedyTime  and speedyDist methods account for these changes by incrementally 

updating the optimal airspeed and fuel consumption rate.   

For each individual helicopter, separate level flight performance graphs exist 

based on pressure altitude and outside air temperature.  For the fixed-wing aircraft (EG: 

F/A-18C) these graphs are similar but the parameters displayed are different.  Figure 12 

shows level flight performance for an F/A-18C Hornet. 
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Figure 12.   F/A-18C Level Flight Performance (From: NAVAIR 2001) 

 

In the example highlighted on Figure 12, an F/A-18C with gross weight of 30,000 

pounds, flying at 25,000 feet in a standard atmosphere with a cumulative drag index of 

200 counts will have the following optimal parameters: 

• Maximum endurance Mach number (MME) ≅ 0.482 

• Maximum endurance specific range (SRME) ≅ 0.0762 nm/lb (nautical miles 
per pound of fuel)  

• Maximum range Mach number (MMR) ≅ 0.586 

• Maximum range specific range (SRMR) ≅ 0.0830 nm/lb 

• Maximum continuous power Mach number (MMCP) ≅ 0.894 

• Maximum continuous power specific range (SRMCP) ≅ 0.0478 nm/lb 
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Mach number is defined as the  ratio of aircraft speed to the speed of sound at 

altitude in a standard atmosphere.  Therefore, the conversion of Mach number to true 

airspeed takes the following form: 

aMV ×=  

 where: V = true airspeed (in KTAS) 

  M = Mach number (from the graph) 

  a = speed of sound at altitude (Standard Day – Appendix A) 

Dividing the true airspeed by the specific range yields the fuel flow in pounds per hour: 

SR
V

FF =  

 where: FF = fuel flow (in lbs/hr)  

   SR = specific range (in nm/lb – from the graph) 

Using these conversions for the example in Figure 12: 

• Maximum endurance airspeed (VME) ≅ 290 KTAS (Knots True Air Speed) 

• Maximum endurance fuel flow (FFME) ≅ 3,808 lbs/hr (pounds per hour) 

• Maximum range airspeed (VMR) ≅ 353 KTAS 

• Maximum range fuel flow (FFMR) ≅ 4,250 lbs/hr 

• Maximum continuous power airspeed (VMCP) ≅ 538 KTAS 

• Maximum continuous power fuel flow (FFMCP) ≅ 11,255 lbs/hr 

Like Figure 11, the graph featured in Figure 12 is one of many such graphs for the 

F/A-18C identifying specific flight parameters (Mach numbers and specific ranges) for 

different altitudes and aircraft gross weights.  It is important to note that the level flight 

performance graphs for the F/A-18C and the F-14A both assume standard atmospheric 

conditions.  These conditions are based on an outside air temperature of 15 degrees 

Celsius at sea level with a change of -1.978 degrees Centigrade per 1000-foot increase in 

altitude.  Appendix A details the properties of the standard atmosphere (also called the 

“U.S. Standard Day, 1962”).   

Each of these graphs is represented by a matrix within the individual aircraft Java 

class (in this case FA18Cstd).  Each matrix has the optimal specific ranges and Mach 

numbers classified by drag index.  Interpolation between the drag index lines provides a 
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close approximation of the actual optimal Mach number and specific range for a given 

gross weight and altitude.  Interpolation between matrices representing the different gross 

weights and altitudes returns a close approximation to the aircraft operating at a given 

altitude and gross weight.  The gross weight is reduced as fuel is consumed – and 

consequently the optimal Mach numbers and specific ranges also change.  The loiter, 

cruise, speedyTime  and speedyDist methods account for these changes by incrementally 

updating the optimal Mach number and specific range.  Finally, the Mach number and 

specific range values are converted to airspeed and fuel consumption rate for use in the 

cruise, loiter, speedyTime  and speedyDist methods.   

3. Aerodynamic Drag 

Aerodynamic drag is a major factor influencing fuel consumption rates – 

particularly for fast-moving aircraft and for aircraft whose cross-sectional drag area 

varies greatly with different payloads.  The flight performance graphs for almost all of 

the aircraft had some means of accounting for drag.  The CH-53E, F-14A, F/A-18C, AH-

1W and AH-64A all have dependence on drag developed into their flight performance 

graphs.  The determination of the drag index is based on the payload carried by the 

aircraft.  This section will demonstrate how the drag index is computed for the aircraft 

used in the Java model.   

a. Drag for the SH-60B and HH-60H Seahawk Helicopters 

The performance graphs for the SH-60B and HH-60H Seahawk do not 

account for drag.  The relatively slower airspeed of the Seahawk helicopters relative to 

the fixed wing aircraft combined with the smaller variation in cross-sectional drag area 

for given payloads equates to trivial changes in the overall drag coefficient for these 

aircraft.  The only situation where drag might have a greater effect on fuel efficiency 

would occur when the helicopters are utilized for vertical replenishment (VERTREP) 

over long distances.  Neither the HH-60H nor the SH-60B NATOPS manuals list drag 

performance graphs for VERTREP – as this is not a primary mission area for these 

aircraft.   

b. Drag for the CH-53E Super Stallion Helicopter 

The performance graphs for the CH-53E Super Stallion have a Special 

Mission section where VERTREP flight performance charts are listed.  The computation 
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of the drag is based on the frontal area of the external load and its handling 

characteristics. 

 
Figure 13.   CH-53E External Load Drag (From NAVAIR 2001) 

 

Once the increase in drag is determined, special external load flight 

performance graphs are based on the total fuel consumption due to the load.  The vertrep 

method within CH53E assumes a constant airspeed based on maximum safe speed for 

external operations (arbitrarily determined by the author).  Interpolation between gross 

weight, altitude and computed drag area is done using the same algorithm – by 

converting these special flight performance graphs to matrices within CH53E and then 

interpolating between values for a given gross weight within an individual matrix and 

between matrices for a given altitude and drag area.  Figure 14 is an example of an 

external load flight performance graph. 
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Figure 14.   CH53E External Load Flight Performance (From: NAVAIR 2001) 

 
c. Drag for the AH-1W Cobra and AH-64A Apache Helicopters 

The AH-1W Cobra and the AH-64A Apache helicopters both account for 

drag within their respective level flight performance graphs.  A “multiplying factor” is 

determined based on the drag configuration.  This multiplying factor is used within the 

level flight performance graphs to determine the change in power required to maintain 

required airspeed (such as VMR).  This relationship is nicely fitted with a least squares 

polynomial regression equation.  Once the change in power required is determined the 

performance graph functions exactly like the performance graphs for the other 

helicopters.  VME, FFME, VMR, FFMR, VMCP  and FFMCP  are determined by interpolation of 

table look-up values converted to matrices in the respective Java classes for each aircraft. 
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Figure 15.   AH-1W and AH-64A Weapons Stations 

 
d. Drag for the F-14A Tomcat and F/A-18C Hornet 

The flight performance graphs for both the F-14A Tomcat and F/A-18C 

Hornet are based on drag index (or “drag count”).  For each of these aircraft, the drag 

count is based on the ordnance loaded on the aircraft.  The NATOPS performance charts 

list all of the ordnance that the aircraft are capable of carrying and the corresponding drag 

count for each type of ordnance plus the specific weapons pylons and delivery 

mechanisms used to secure the ordnance to the aircraft fuselage. 

 
Figure 16.   F-14A Sample Drag Computation (From: NAVAIR 2001) 
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The drag count for the F-14A is easily computed (see Figure 16) and 

assigned as a parameter to the constructor for F14Astd (the Java class for the F-14A 

Tomcat).  However, drag for the F/A-18C is broken down into two separate types – basic 

stores drag and interference drag.  The basic stores drag is computed in the same manner 

as the total drag for the F-14A – by adding up the basic stores drag counts for each type 

of ordnance used for a specified weapons load out.   

Interference drag only occurs for certain weapons payloads and only at 

specific weapons stations.  The F/A-18C flight performance graphs include a matrix, 

which contains a listing of all possible combinations of ordnance mixes where 

interference drag occurs.  The interference drag counts are summed to get an interference 

drag code (see Figure 17).  This interference drag code is then used to determine the 

interference drag, which is dependent upon airspeed.  Interference drag is added to basic 

stores drag to determine the total drag count.  Both the Basic Stores Drag Count and the 

Interference Drag Code are included in the constructor for FA18Cstd.   

As airspeed changes, interference drag changes, and consequently total 

drag count changes.  FA18Cstd accounts for the changing total drag by re-computing the 

interference drag incrementally within the loiter, cruise, speedyTime , and speedyDist 

methods. 
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Figure 17.   F/A-18C Sample Drag Computation (From: NAVAIR 2001) 
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IV. MISSION PROFILES AND REGRESSION ANALYSIS 

The Java model consisting of the interfaces, Aircraft and Helicopter, and the 

individual aircraft classes (AH1W, AH64A, CH53E, F14Astd, FA18Cstd, SH60B and 

HH60H) are used in the creation of Java execution classes.  These execution classes 

represent different mission profiles for each of the aircraft and allow analysis of their 

respective fuel consumption rates versus the factors of payload, combat radius, and on-

station endurance.  Each execution class examines several different configurations of 

each aircraft type flying the same mission profile.  The Golden Section Algorithm is used 

to determine combat radius and on-station endurance for the given profile and drag 

configuration, holding total fuel consumed to the allotted fuel (within 1.0 lb JP-5).  

Regression analysis on the results of each model run yields strong correlation of fuel 

consumption rates (fuel efficiency) to these factors.  This chapter outlines the different 

mission profiles (execution classes) that are used in the evaluation and reports the results 

of the regression analysis.   

A. AH-1W COBRA MISSION PROFILE 

 
Figure 18.   AH-1W Mission Profile 

 

Figure 18 displays a notional mission profile for the AH-1W Cobra helicopter.  

This mission profile was written into the Java execution class TestCobra1 and the output 
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is displayed in Table 3.  TestCobra1 examines sixteen different payload configurations 

for the AH-1W and determines the maximum possible combat radius (in nautical miles) 

for each.  Fuel used is held constant across all configurations (within 0.5 lbs).  The only 

parameter allowed to vary is combat radius – based on fuel consumption.   

TestCobra1 consists of the following flight evolutions: 

• Warm up taxi and takeoff 

• Climb to 1, 500 ft MSL (Mean Sea Level) 

• Ingress Leg (distance variable – fuel dependent) 

• Loiter for 30 minutes over target area as Forward Air Controller 

• Descend to 300 ft MSL 

• Combat for 15 minutes 

• Climb to 500 ft MSL 

• Egress out 5 nm 

• Climb to 3,500 ft MSL 

• Return to LHD (Amphibious Assault Ship) 

• Descend to 500 ft MSL (pattern altitude) 

• Loiter at pattern altitude for 20 minutes (approaches) and recover 

 

 
Table 3.   TestCobra1 Output 
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Figure 19.   Actual Versus Fitted Values 

 
Regression Statistics

Multiple R 0.99600785
R Square 0.992031638
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Figure 20.   Residual Plot for TestCobra1.java. 

 

Regression analysis of the output from TestCobra1 yields strong correlation 

between fuel consumption rate (burn rate) and the factors combat radius and payload.  

The adjusted R2 value of 0.99 indicates that almost all of the variation in the model is 

explained by these two factors.  The low p-values indicate that payload, combat radius 

and their interaction (combat radius: payload) all have a statistically significant effect on 

fuel consumption rate.  Therefore, combat radius and payload are good predictors for fuel 

consumption rate for the AH-1W Cobra. 

Model diagnostics for this relationship indicate that this is an appropriate model.  

In particular, plots of residuals and fitted values for burn rate do not indicate a lack of fit 

– or heteroscedasticity.  Although there is some small nonlinearity from the residual plot, 

the high coefficient of determination (R2) along with the very small magnitude of the 

residuals indicates that the linear fit is more than adequate for the purposes of this thesis.  

This is further supported by the partial residual plots and Normal probability plots.   
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B. AH-64A APACHE MISSION PROFILE 

 
Figure 21.   AH-64A Mission Profile 

 

Figure 21 displays a notional mission profile for the AH-64A Apache helicopter.  

Like TestCobra1, this mission profile was written into a Java execution class – 

TestApache1.  TestApache1 examines six different payload configurations for the AH-

64A and determines the maximum possible combat radius (in nautical miles) for each.  

Once again, fuel used is held constant across all configurations (within 0.5 lbs) and 

combat radius is allowed to vary with fuel consumption rates. 

TestApache1 consists of the following flight evolutions: 

• Warm up taxi and takeoff 

• Climb to 1, 500 ft MSL (Mean Sea Level) 

• Cruise Out Leg (distance variable – fuel dependent) 

• Loiter for 30 minutes over target area as Forward Air Controller 

• Descend to 300 ft MSL 

• Combat for 15 minutes. 

• Climb to 500 ft MSL 

• Egress out 5 nm 

• Climb to 3,500 ft MSL 
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• Cruise Back Leg (distance variable – fuel dependent) 

• Descend and land 

The regression results are displayed in Table 5 and as in the previous case, 

demonstrate strong correlation between Burn Rate and the factors Combat Radius, 

Payload and their interaction term.  The high adjusted R2 value indicates that almost all of 

the variance is explained by this regression model.  The low F significance and p-values 

for each of the coefficients indicate that Combat Radius, Payload and their interaction 

have a significant effect on fuel consumption rate for the AH-64A Apache helicopter.  

Figure 22 displays the predicted fuel consumption rates. 

Regression Statistics
Multiple R 0.999900114
R Square 0.999800237
Adjusted R Square 0.999500593
Standard Error 1.076208701
Observations 6

ANOVA
df SS MS F Significance F

Regression 3 11593.68355 3864.561183 3336.623384 0.000299629
Residual 2 2.316450338 1.158225169
Total 5 11596

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 1407.239133 10.85653485 129.6213896 5.95125E-05 1360.527201 1453.951065
 PayLd 0.030443437 0.006004277 5.070292199 0.036766735 0.004609102 0.056277772
  ComRad -6.543040582 0.14613748 -44.77318599 0.00049847 -7.171819848 -5.914261316
 PayLd:  ComRad -0.00048025 8.76482E-05 -5.47929611 0.031731299 -0.00085737 -0.00010313  

Table 5.   Regression Output for TestApache1.java 
 



41 

 
Figure 22.   Actual versus Fitted values for TestApache1 

 
C. CH-53E SUPER STALLION MISSION PROFILE 

 

 
Figure 23.   CH53E Mission Profile 

 

Figure 23 displays a notional mission profile for the CH-53E Super Stallion 

helicopter.  This mission profile was written into a Java execution class – 
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TestSeaStallion2.  The execution class examines the CH-53E carrying 30 different 

external cargo payloads.  The weights of these payloads are arbitrarily determined by the 

author and are well within the limits for external loading per CH-53E NATOPS 

limitations (maximum external load equals 36,000 lbs [NAVAIR 2002]).  The drag areas 

are determined using a conservative range within the limits specified by the CH-53E 

NATOPS manual (see Figure 13).  Specifically, for this execution, all of the external 

payload weights are randomly chosen values between 5,000 and 15,000 lbs and the drag 

areas are randomly chosen values between 33.3 and 100 square feet (see Figure 24). 

 
Figure 24.   CH-53E External Cargo 

 

For each of these external cargo payloads, the execution class, TestSeaStallion2  

determines the maximum possible radius of action (in nautical miles) for each.  Internal 

fuel carried by each helicopter is constant and equal to the minimum of the maximum 

possible for all of the CH-53E configurations.  Maximum radius of action varies (using 

the Golden Section Algorithm) according to fuel consumption rate. 

TestSeaStallion2 consists of the following flight evolutions: 

• Lift into 5 minute hover out of ground effect, pick up external load 

• Climb to 300 ft MSL 

• Ingress Leg (distance variable – fuel dependent) 

• Descend into 5 minute hover OGE, deliver external load 

• Climb to 1,500 ft MSL 

• Egress Leg 

• Descend to 500 ft MSL and loiter over ship for 20 minutes and land 

CH-53E SuperStallion 
External Cargo Load 

• Palletized Box 
in Cargo Net 

-Weight Variable 
(5,000 to 15,000 lbs) 

• Drag Area Variable 
(33.3 to 100 sq. ft.) 
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Statistics for the output of TestSeaStallion2 are displayed in Table 6.  The high 

adjusted R2 value indicates that the variability in fuel consumption rate is explained well 

by the factors combat radius, payload, and their interaction.  Unlike the previous two 

cases however, the variability in fuel consumption rates appears to increase with expected 

fuel consumption rate (see Figure 25).  The coefficients from the least squares fit for this 

model are provided in Figure 6, but the inference results and standard errors – which rely 

on the assumption of homoscedasticity, are not.  Since the goal is to determine the 

existence of a relationship and not to infer or predict from estimates of that relationship, 

the regression analysis is not carried further (e.g. variance stabilizing transformations etc. 

are not explored here). 

Regression Statistics
Multiple R 0.999218347
R Square 0.998437305
Adjusted R Square 0.998256994
Standard Error 2.599009524
Observations 30

ANOVA
df SS MS F Significance F

Regression 3 112211.0406 37403.68018 5537.306882 1.38578E-36
Residual 26 175.6261131 6.754850504
Total 29 112386.6667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 4357.566912 73.90225901 58.96392033 3.22942E-29 4205.658544 4509.475281
 PayLd 0.038031741 0.007235017 5.256621007 1.70929E-05 0.023159941 0.05290354
  ComRad -2.793196135 0.208854632 -13.37387688 3.65777E-13 -3.222503261 -2.36388901
 PayLd:  ComRad -7.79856E-05 2.0614E-05 -3.78313667 0.000820929 -0.000120358 -3.56129E-05  

Table 6.   Regression Output for TestSeaStallion2 
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Figure 25.   Actual Versus Fitted Values for TestSeaStallion2 

 
D. F-14A TOMCAT MISSION PROFILE 

 

 
Figure 26.   F-14A Mission Profile 

 

Figure 26 displays a notional attack mission profile for the F-14A Tomcat.  The 

execution class, TestTomcat1, utilizes this mission profile to examine thirty different 

CD TestSuperStallion2.java    Actual Burn Rate vs. Fitted Burn Rate 
i— ~ to •           s* 

o 
in 
10 
CO 

•                         jT 

■=■ 
o 
to 
CO 

I s. 
3    £ 

o o 
8" *s^* 

o 

3" y/m 

o o 
3 • 

1                       1                        1                        1                       1                        1                        1 

3400                 3450                3500                3550                3600                3650                3700 
Fined: ComRad + PayLd + ComRad:Payl_d 

TestTomcatl.java Mission Profile 

Combat Radius (variable) 



45 

weapons configurations of the F-14A.  These configurations are displayed in Table 7 

(refer to Figure 16 for fuselage locations of weapons stations).  Maximum combat radius 

is determined based on fuel consumption rates for each of the thirty different F-14A 

weapons configurations.  Drag index information and payload weights were determined 

from the F-14 Naval Weapons Publication, NWP 3-22.5-F14A/B/D, Volume III.  The 

regression statistics and fitted values versus actual values plot are provided in Table 8 and 

Figure 27 respectively. 

1 2 3 4 5 6 7 8
config00 AIM-7/9 Empty GBU-16 Empty Empty GBU-16 Empty AIM-9LAN
config01 AIM-7/9 Empty GBU-16 GBU-16 Empty GBU-16 Empty AIM-9LAN
config02 AIM-7/9 Empty GBU-16 GBU-16 GBU-16 GBU-16 Empty AIM-9LAN
config03 AIM-7/9 Empty GBU-16 GBU-16 CBU-100 GBU-16 Empty AIM-9LAN
config04 AIM-7/9 Empty GBU-16 CBU-100 CBU-100 GBU-16 Empty AIM-9LAN
config05 AIM-7/9 Empty GBU-16 CBU-99 CBU-99 GBU-16 Empty AIM-9LAN
config06 AIM-54 Empty GBU-16 CBU-99 GBU-16 GBU-16 Empty AIM-9LAN
config07 AIM-7/9 Empty GBU-24 CBU-100 CBU-100 GBU-16 Empty AIM-9LAN
config08 AIM-7/9 Empty GBU-24 Empty GBU-24 Empty Empty AIM-9LAN
config09 AIM-7/9 Empty GBU-24 GBU-16 GBU-24 Empty Empty AIM-9LAN
config10 AIM-7/9 Empty GBU-24 GBU-16 GBU-24 GBU-16 Empty AIM-9LAN
config11 AIM-7/9 Empty GBU-12 Empty ADM-141 GBU-12 Empty AIM-9LAN
config12 AIM-7/9 Empty GBU-12 BLU-111 Empty GBU-12 Empty AIM-9LAN
config13 AIM-7/9 Empty GBU-12 BLU-111 ADM-141 GBU-12 Empty AIM-9LAN
config14 AIM-7/9 Empty GBU-12 Empty BLU-110 GBU-12 Empty AIM-9LAN
config15 AIM-54 Empty GBU-12 MK-83 ADM-141 GBU-12 Empty AIM-9LAN
config16 AIM-7/9 Empty GBU-12 CBU-99 CBU-100 GBU-12 Empty AIM-9LAN
config17 AIM-7/9 Empty GBU-12 BLU-111 BLU-111 GBU-12 Empty AIM-9LAN
config18 AIM-54 Empty GBU-16 GBU-12 GBU-12 GBU-16 Empty AIM-9LAN
config19 AIM-7/9 Empty GBU-12 ADM-141 BLU-110 BLU-111 Empty AIM-9LAN
config20 AIM-54 Empty GBU-12 BLU-111 BLU-111 GBU-12 Empty AIM-9LAN
config21 AIM-7/9 Empty GBU-16 GBU-12 GBU-12 Empty Empty AIM-9LAN
config22 AIM-7/9 Empty GBU-12 ADM-141 BLU-110 GBU-12 Empty AIM-9LAN
config23 AIM-7/9 Empty GBU-12 BLU-110 BLU-110 GBU-12 Empty AIM-9LAN
config24 AIM-7/9 Empty GBU-12 BLU-110 GBU-16 GBU-12 Empty AIM-9LAN
config25 AIM-7/9 Empty GBU-10 CBU-99 GBU-12 GBU-10 Empty AIM-9LAN
config26 AIM-7/9 Empty GBU-10 GBU-12 GBU-16 GBU-10 Empty AIM-9LAN
config27 AIM-7/9 Empty GBU-12 GBU-12 GBU-16 GBU-12 Empty AIM-9LAN
config28 AIM-7/9 Empty GBU-10 GBU-12 GBU-12 GBU-10 Empty AIM-9LAN
config29 AIM-7/9 Empty GBU-12 GBU-12 GBU-12 GBU-12 Empty AIM-9LAN

F-14A Weapon StationConfiguration

NOTES:  AIM 7/9 at Sta. 1 indicates AIM-7 and AIM-9 missiles.  AIM-9LAN at Sta 8 indicates AIM - 9 missile and LANTIRN 
pod.  Stations 2 and 7 are used for external fuel tanks only (when carried).  

Table 7.   F-14A Weapons Configurations Used in TestTomcat1 
 

The regression output for TestTomcat1 again indicates a strong relationship 

between the factors combat radius, payload, and their interaction with fuel consumption 

rate.  A strong adjusted R2 value, very low F significance as well as low p-values for each 

of the coefficients in the regression model are all indicators of a strong relationship. 
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Regression Statistics
Multiple R 0.999952079
R Square 0.99990416
Adjusted R Square 0.999893102
Standard Error 5.708379319
Observations 30

ANOVA
df SS MS F Significance F

Regression 3 8839156.275 2946385.425 90419.87647 2.4084E-52
Residual 26 847.2254557 32.58559445
Total 29 8840003.5

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 10042.06402 50.84213765 197.5145908 7.8655E-43 9937.556437 10146.5716
 PayLd 0.117137511 0.004118595 28.44113527 4.07445E-21 0.108671613 0.12560341
  ComRad -13.46124418 0.180094057 -74.7456324 7.0214E-32 -13.83143306 -13.09105531
 PayLd:  ComRad -0.000439663 1.76504E-05 -24.90951965 1.13748E-19 -0.000475944 -0.000403382  

Table 8.   Regression Output for TestTomcat1 
 

 
Figure 27.   Actual Versus Fitted Values for TestTomcat1 
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E. F/A-18C HORNET MISSION PROFILES 

 
Figure 28.   F/A-18C Mission Profile (Combat Radius Variable) 

 

 
Figure 29.   F/A-18C Mission Profile (On-Station Endurance Variable) 

 

Figures 28 and 29 display two different mission profiles for the F/A-18C aircraft.  

In Figure 28, the maximum combat radius is allowed to vary according to fuel 

consumption rate and, in Figure 29, the maximum on-station endurance is allowed to 
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vary according to fuel consumption.  Thirty different weapons configurations of the F/A-

18C were used in each of these two mission profiles.  These weapon configurations are 

detailed in Table 9.  Refer to Figure 17 for fuselage locations of the respective weapon 

stations on the F/A-18C Hornet.   

9 8 7 6 5 4 3 2 1
config00 AIM-9 AGM-65 AGM-65 ASQ-173 MK-82 AAS-38 AGM-65 AGM-65 AIM-9

config01 AIM-9 AGM-84E AGM-84E ASQ-173 MK-82 AAS-38 AGM-84E AWW-9B AIM-9

config02 AIM-9 AGM-84E AGM-88 ASQ-173 MK-83 AAS-38 AGM-88 AWW-9B AIM-9

config03 AIM-9 GBU-10 AGM-88 ASQ-173 MK-83 AAS-38 AGM-88 GBU-10 AIM-9

config04 AIM-9 GBU-24 AGM-88 ASQ-173 MK-83 AAS-38 AGM-88 GBU-24 AIM-9

config05 AIM-9 GBU-24 GBU-16 ASQ-173 MK-20 AAS-38 GBU-16 GBU-24 AIM-9

config06 AIM-9 AGM-62A GBU-16 ASQ-173 MK-20 AAS-38 GBU-16 AWW-9B AIM-9

config07 AIM-9 AGM-62A GBU-12 ASQ-173 MK-20 AAS-38 GBU-12 AWW-9B AIM-9

config08 AIM-9 GBU-12 GBU-12 ASQ-173 MK-20 AAS-38 GBU-12 GBU-12 AIM-9

config09 AIM-9 GBU-16 GBU-16 ASQ-173 MK-20 AAS-38 GBU-16 GBU-16 AIM-9

config10 AIM-9 GBU-10 GBU-16 ASQ-173 MK-20 AAS-38 GBU-16 GBU-10 AIM-9

config11 AIM-9 GBU-10 AGM-88 ASQ-173 MK-20 AAS-38 AGM-88 GBU-10 AIM-9

config12 AIM-9 GBU-24 AGM-88 ASQ-173 MK-20 AAS-38 AGM-88 GBU-24 AIM-9

config13 AIM-9 WALLEYE-II AGM-88 ASQ-173 MK-20 AAS-38 AGM-88 AWW-13 AIM-9

config14 AIM-9 WALLEYE-II GBU-12 ASQ-173 MK-20 AAS-38 GBU-12 AWW-13 AIM-9

config15 AIM-9 AGM-84E GBU-12 ASQ-173 MK-20 AAS-38 GBU-12 AWW-13 AIM-9

config16 AIM-9 AGM-84E AGM-88 ASQ-173 Empty AAS-38 AGM-88 AWW-13 AIM-9

config17 AIM-9 AGM-84E GBU-12 ASQ-173 Empty AAS-38 GBU-12 AWW-13 AIM-9

config18 AIM-9 GBU-10 GBU-12 ASQ-173 Empty AAS-38 GBU-12 GBU-10 AIM-9

config19 AIM-9 AGM-65 AGM-65 ASQ-173 Empty AAS-38 AGM-65 AGM-65 AIM-9

config20 AIM-9 AGM-84E AGM-65 ASQ-173 Empty AAS-38 AGM-65 AWW-13 AIM-9

config21 AIM-9 GBU-24 AGM-65 ASQ-173 Empty AAS-38 AGM-65 GBU-24 AIM-9

config22 AIM-9 GBU-24 MK-84 ASQ-173 Empty AAS-38 MK-84 GBU-24 AIM-9

config23 AIM-9 GBU-24 MK-83 ASQ-173 Empty AAS-38 MK-83 GBU-24 AIM-9

config24 AIM-9 GBU-24 MK-20 ASQ-173 Empty AAS-38 MK-20 GBU-24 AIM-9

config25 AIM-9 GBU-10 MK-20 ASQ-173 Empty AAS-38 MK-20 GBU-10 AIM-9

config26 AIM-9 GBU-12 MK-20 ASQ-173 Empty AAS-38 MK-20 GBU-12 AIM-9

config27 AIM-9 GBU-12 MK-82 ASQ-173 Empty AAS-38 MK-82 GBU-12 AIM-9

config28 AIM-9 MK-83 MK-83 ASQ-173 MK-83 AAS-38 MK-83 MK-83 AIM-9

config29 AIM-9 MK-82 MK-82 ASQ-173 MK-82 AAS-38 MK-82 MK-82 AIM-9

Configuration
F/A-18C Weapon Station

 
Table 9.   F/A-18C Weapon Configurations for TestHornet2 and TestHornet4 

 
1. TestHornet2 Mission Profile 

The mission profile for TestHornet2 proceeds as follows: 

• Warm up, taxi and takeoff 

• Climb to 27,000 ft MSL 

• “Cruise Out” Leg (distance variable – fuel dependent) 

• Loiter over Target Area for 30 minutes (on-station time held constant) 

• Descend to 2,000 ft MSL 

• Weapons Delivery and Combat (15 min. maximum continuous power) 

• Climb to 31,000 ft MSL 
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• “Cruise Back” Leg 

• Descend to 1,500 ft MSL pattern altitude, loiter for 20 minutes 

• Recover aboard CVN 

TestHornet2 varies the combat radius according to fuel consumption rate in the 

same manner as TestCobra1, TestApache1, TestSeaStallion2, and TestTomcat1.  The 

regression output of TestHornet2 is displayed in Table 10. 

Regression Statistics
Multiple R 0.996402817
R Square 0.992818574
Adjusted R Square 0.991989948
Standard Error 45.49382829
Observations 30

ANOVA
df SS MS F Significance F

Regression 3 7439393.568 2479797.856 1198.150331 5.63544E-28
Residual 26 53811.89873 2069.688413
Total 29 7493205.467

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 6836.64233 183.6390776 37.2286902 4.37446E-24 6459.166552 7214.118107
 PayLd 0.196269871 0.020029563 9.799009112 3.23018E-10 0.155098487 0.237441254
  ComRad -6.539287846 1.290832285 -5.065946925 2.82401E-05 -9.192633348 -3.885942345
 PayLd:  ComRad -0.001115808 0.000175699 -6.35069094 1.00257E-06 -0.001476962 -0.000754654  

Table 10.   Regression Output for TestHornet2 
 

 
Figure 30.   Actual Versus Fitted Values for TestHornet2 
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The strong adjusted R2 value, low model F-significance and low coefficient p-

values indicate a strong relationship of the factors combat radius, payload and their 

interaction with fuel consumption rate.   

2. TestHornet4 Mission Profile 

TestHornet4 is a mission profile which determines the relationship between on-

station endurance and payload with fuel consumption rate.  In some aircraft acquisitions, 

on-station endurance is used as a KPP vice combat radius.  Therefore, it is useful to 

examine the relationship that exists between these factors.  TestHornet4 utilizes a similar 

mission profile to TestHornet2 except that the combat radius is held constant and the on-

station loiter time (over the target area) is allowed to vary according to fuel consumption 

rate.   

The mission profile for TestHornet4 proceeds as follows: 

• Warm up, taxi and takeoff. 

• Climb to 27,000 ft MSL. 

• Cruise out 150 nautical miles. 

• Loiter over Target Area (on-station endurance time dependent on fuel 
consumption rate). 

• Weapons Delivery and Combat (15 minutes at maximum continuous 
power, air-to-ground weapons delivered at altitude). 

• Climb to 34,000 ft MSL. 

• “Cruise Back” Leg. 

• Descend to 1,500 ft MSL pattern altitude, loiter for 20 minutes. 

• Recover aboard CVN. 

The regression output for TestHornet4 is displayed in Table 11.  The high 

adjusted R2 value, low model F-significance and low coefficient p-values all indicate that 

there is a strong relationship between fuel consumption rate and the factors on-station 

endurance, payload and their interaction.  Additionally, the fitted values plot (Figure 31) 

– even with slight non- linearity of residuals – is further evidence of a strong relationship. 
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Regression Statistics
Multiple R 0.999022599
R Square 0.998046153
Adjusted R Square 0.997820709
Standard Error 20.29917499
Observations 30

ANOVA
df SS MS F Significance F

Regression 3 5472555.198 1824185.066 4427.026494 2.52828E-35
Residual 26 10713.46914 412.0565053
Total 29 5483268.667

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 6394.46281 110.6236832 57.8037417 5.39358E-29 6167.072424 6621.853196
 PayLd 0.093770794 0.010391223 9.024037873 1.71976E-09 0.072411314 0.115130273
  OnStaT -1217.938311 74.00034231 -16.45854969 2.88225E-15 -1370.048293 -1065.828329
 PayLd:  OnStaT -0.067244505 0.007721899 -8.708286124 3.47657E-09 -0.083117106 -0.051371904  

Table 11.   Regression Output for TestHornet4 
 

 
Figure 31.   Actual Versus Fitted Values for TestHornet4 
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F. SEAHAWK HELICOPTER MISSION PROFILES 

 
Figure 32.   SH60B Seahawk Mission Profile (On-Station Endurance Variable) 

 

 
Figure 33.   HH60H Seahawk Mission Profile (Radius of Action Variable) 

 

Figures 32 and 33 present two different mission profiles for two variants for the 

U.S. Navy's H-60 Seahawk helicopter - the SH-60B and the HH-60H. 
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1. TestSeahawk1 and TestSeahawk2 Mission Profiles 

Figure 32 displays a typical mission profile for the SH-60B Seahawk helicopter.  

The SH-60B is the U.S. Navy's primary rotary-wing asset operating from cruisers and 

destroyers utilized for Undersea Warfare (USW) and Anti-Ship Surveillance and 

Targeting (ASST).  TestSeahawk1 is a Java execution class that examines sixteen 

different weapon configurations of the SH-60B flying the mission profile from Figure 32.  

These weapon fuselage locations and configurations are displayed in Figure 34.  The fuel 

used for each helicopter configuration in TestSeahawk1 is held constant and equals the 

minimum of the maximum possible capacity with the heaviest weapon payload (in this 

case config00).  Therefore, each configuration uses the same amount of fuel.  The combat 

radius varies based on fuel consumption rate and the amount of fuel available. 

The TestSeahawk1 and TestSeahawk2 mission profile proceeds as follows: 

• 10 minute warm up on CG flight deck and takeoff 

• Climb to 5,000 ft MSL 

• Cruise out 30 nautical miles conducting radar search 

• Loiter over Search Area (on-station endurance time dependent on fuel 
consumption rate) 

• Descend to 400 ft and deploy sonobuoy pattern for 18 minutes 

• Track and attack sequence on submarine contact at maximum continuous 
power for 15 minutes 

• Climb to 2,000 ft MSL 

• Return leg 30 nm 

• Descend to 500 ft MSL pattern altitude, loiter for 20 minutes 

• Recover aboard CG 
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PORT FWD PORT AFT STBD
config00 AGM-119 MK-50 MK-50
config01 AGM-119 MK-50 MK-46
config02 AGM-119 MK-46 MK-46
config03 AGM-119 MK-50 Empty
config04 AGM-119 MK-46 Empty
config05 AGM-119 Empty Empty
config06 MK-50 MK-50 MK-50
config07 MK-50 MK-50 MK-46
config08 MK-50 MK-46 MK-46
config09 MK-46 MK-50 MK-50
config10 Empty MK-50 MK-50
config11 Empty MK-50 MK-46
config12 Empty MK-46 MK-46
config13 Empty MK-50 Empty
config14 Empty MK-46 Empty
config15 Empty Empty Empty

SH-60B Weapon StationConfig.

 
Figure 34.   SH-60B Weapon Stations and Configurations for TestSeahawk1 and 

TestSeahawk2 
 

Table 12 is a graph of the regression output from TestSeahawk1 showing fuel 

consumption rate versus the factors on-station time, payload and their interaction.  The 

adjusted R2 is extremely strong (nearly 1.0).  The results of TestSeahawk1 are 

remarkably linear.  Figures 35 and 36 show fuel consumption rate plotted against the 

factors on-station endurance and payload respectively.  In each case, the linear 

relationship is quite strong.  It is possible that these relationships are perfectly linear and 

that the residual errors are likely attributable to the model construction - when the 

NATOPS performance charts were transcribed into matrices for the Java class SH60B. 
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Regression Statistics
Multiple R 0.999967377
R Square 0.999934754
Adjusted R Square 0.999918443
Standard Error 0.300811389
Observations 16

ANOVA
df SS MS F Significance F

Regression 3 16641.35165 5547.117217 61302.58578 2.26235E-25
Residual 12 1.085849899 0.090487492
Total 15 16642.4375

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 1433.527874 66.37766599 21.59653933 5.67958E-11 1288.903367 1578.152382
 PayLd 0.019740436 0.008691548 2.271222258 0.042344433 0.000803181 0.038677691
  OnStaT -376.3275653 87.91954081 -4.280363181 0.001068325 -567.8877856 -184.7673451
 PayLd:  OnStaT -0.016731911 0.004015173 -4.167170624 0.001306004 -0.025480221 -0.007983601  

Table 12.   Regression for TestSeahawk1 
 

Recall that the SH-60B performance charts do not account for drag.  The small 

total change in the cross-sectional area as a result of the various weapon configurations 

for the SH-60B combined with the subsonic drag characteristics associated with the 

helicopter flight envelope apparently have a very minimal impact on the overall drag 

characteristics of the SH-60B.  This may justify the lack of drag information in the SH-

60B NATOPS performance charts.  Consequently, changes in payload and on-station 

endurance are likely directly proportional to fuel consumption rates.   

 
Figure 35.   SH-60B Fuel Consumption Rate Versus On-Station Endurance 
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Figure 36.   SH-60B Fuel Consumption Rate Versus Payload 

 

TestSeahawk2 uses the same mission profile and weapon configurations as used 

in TestSeahawk1.  However, TestSeahawk2 allows each configuration to carry the 

maximum amount of internal fuel possible - up to the NATOPS limit (fuel is limited by 

maximum internal capacity or by maximum gross weight at takeoff).  The results are 

interestingly different from those of TestSeahawk1 and are displayed in Figure 37.   
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Figure 37.   Fuel Consumption Versus On-Station Endurance 

 

The relationship between fuel consumption rate and on-station endurance appears 

to follow a polynomial fit when maximum internal fuel at takeoff varies according to 

payload - until the maximum fuel capacity is reached.  The last five configurations shown 

in Figure 36 all have the same amount of fuel at takeoff.  Their payloads are light enough 

to allow them to launch with a full tank of fuel.  Notice that their relationship to fuel 

consumption rate is very nearly linear.   

The introduction of a binary indicator variable to the model for fuel consumption 

rate vs. on-station endurance for TestSeahawk2 allows for a change in the linear fit for 

the last five configurations in Figure 37.  A binary variable, MaxFuel, is added to the 

regression model such that MaxFuel equals one if the configuration launches with 

maximum internal fuel (4,012 lbs) and zero otherwise.  The regression model is: 

 BurnRt = β0 + β1*OnStaT + β2*MaxFuel + β3*OnStaT*MaxFuel 

 where: OnStaT  = on-station endurance (hrs)  

  MaxFuel = binary variable indicating maximum internal fuel 

  β0 = regression model intercept 

  β1, β2 and β3 = regression model coefficients 
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MaxFuel is binary, therefore, β2 and β3 act as intercept and slope modifiers when 

fuel is at maximum capacity.  From Figure 38, note that the piecewise linear fit does not 

completely explain the relationship in Figure 37.  However the very high adjusted R2 of 

0.99 indicates that it does explain most of the variability in fuel consumption.  Thus, 

taking into account the binary variable, MaxFuel, there is a very strong relationship 

between fuel consumption rate and on-station endurance.   

Regression Statistics
Multiple R 0.997203586
R Square 0.994414993
Adjusted R Square 0.993018741
Standard Error 6.16659699
Observations 16

ANOVA
df SS MS F Significance F

Regression 3 81248.67698 27082.89233 712.2031824 8.87883E-14
Residual 12 456.3230212 38.02691844
Total 15 81705

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 1336.270105 4.94588943 270.1779173 4.4484E-24 1325.493938 1347.046272
  OnStaT -131.0473478 4.121495166 -31.79606975 5.90698E-13 -140.0273142 -122.0673814
MaxFuel 300.6253022 91.74717325 3.276671003 0.006620846 100.7253874 500.5252169
  OnStaT:MaxFuel -159.8279569 48.07543859 -3.324524156 0.006059214 -264.5753375 -55.08057629  

Table 13.   TestSeahawk2 Regression Output with Indicator Variable 
 

 
Figure 38.   TestSeahawk2 Actual Versus Fitted Values 
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2. TestSeahawk3 and TestSeahawk4 Mission Profiles 

Figure 33 displays a typical mission profile for the HH-60H.  The HH-60H 

helicopter is the Navy's primary rotary-wing asset utilized for Naval Special Warfare 

(NSW) and Combat Search and Rescue (CSAR).  The Java execution classes 

TestSeahawk3, and TestSeahawk4 examine the HH-60H carrying sixteen different 

internal payloads.   

The TestSeahawk3 and TestSeahawk4 mission profile proceeds as follows: 

• 10 minute warm up on CG flight deck and takeoff 

• Climb to 300 ft MSL 

• Ingress Leg (radius of action dependent on fuel consumption rate) 

• Loiter over Landing Zone (LZ) for 5 minutes 

• Descend, briefly land for Special Forces insertion. 

• Climb to 500 ft MSL 

• Return leg 

• Loiter for 20 minutes 

• Recover aboard CG 

The payload weights start at 200 lbs and continue incrementally to a maximum of 

3,200 lbs.  For each payload, the maximum radius of action is determined based on fuel 

consumption rate.  The execution class TestSeahawk3 holds fuel constant across all 

sixteen HH-60H configurations and is equal to the minimum of the maximum fuel 

allowed for each configuration.  In this case the sixteenth configuration carrying the 

heaviest internal payload (3,200 lbs) has the limiting fuel capacity.  Figures 38 and 39 

display fuel consumption rate versus each of the factors payload and radius of action.  

Once again the results are highly linear.  In this case, since the payload carried by the 

HH-60H helicopter is an internal load, the cross-sectional drag area of the aircraft is 

constant across all configurations.  Also - like the SH-60B - the HH-60H NATOPS 

performance charts do not account for changes in drag.  These plots (Figures 38 and 39) 

demonstrate a strong relationship between fuel consumption rates and the factors payload 

and radius of action.  Therefore, any changes in payload and radius of action are likely 

proportional to changes in fuel consumption rates for the HH-60H. 
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Figure 39.   TestSeahawk3 Fuel Consumption Rate Versus Radius of Action 

 

 
Figure 40.   TestSeahawk3 Fuel Consumption Rate Versus Internal Payload 

 

TestSeahawk4 allows internal fuel carried by each configuration of the HH-60H 

to equal the maximum allowed based on internal payload weight up to the maximum 

internal fuel capacity.  Figure 40 is a plot of fuel consumption rate versus radius of action 
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for this scenario.  Again the relationship shows that the limiting (maximum) internal fuel 

capacity (4,012 lbs) causes the maximum radius of action to drop off significantly for the 

last ten configurations – again demonstrating an apparently linear relationship. 

 
Figure 41.   TestSeahawk4 Fuel Consumption Rate Versus Radius of Action 

 

Similarly, as for TestSeahawk2, we introduce a binary indicator variable to the 

model for TestSeahawk4.  Again, a binary variable, MaxFuel, is added to the regression 

model such that MaxFuel equals one if the configuration launches with maximum 

internal fuel (4,012 lbs) and zero otherwise.  The regression model is: 

 BurnRt = β0 + β1*ComRad + β2*MaxFuel + β3*ComRad*MaxFuel 

 where: ComRad  = radius of action (nautical miles)  

  MaxFuel = binary variable indicating maximum internal fuel 

  β0 = regression model intercept 

  β1, β2 and β3 = regression model coefficients 
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Regression Statistics
Multiple R 0.999917003
R Square 0.999834013
Adjusted R Square 0.999792517
Standard Error 0.298276564
Observations 16

ANOVA
df SS MS F Significance F

Regression 3 6430.932373 2143.644124 24094.30609 6.13289E-23
Residual 12 1.067626907 0.088968909
Total 15 6432

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 1265.377022 1.023372046 1236.478002 5.27404E-32 1263.147286 1267.606758
  ComRad -0.300633187 0.006358251 -47.28237298 5.23667E-15 -0.314486625 -0.286779749
MaxFuel 868.972833 6.652889496 130.6158525 2.72112E-20 854.4774322 883.4682337
  ComRad:MaxFuel -4.603970819 0.034485064 -133.5062273 2.09292E-20 -4.679107318 -4.52883432  

Table 14.   TestSeahawk4 Regression Output with Indicator Variable 
 

 
Figure 42.   TestSeahawk4 Actual Versus Fitted Values 

 

The regression output shows the strong relationship between fuel consumption 

rate and radius of action, the binary variable determining maximum internal fuel and their 

interaction.  In fact, the fit is nearly perfect - leading one to suspect that the residuals are 

interpolation errors from the original NATOPS performance charts.   
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V. CONCLUSIONS AND RECOMMENDATIONS 

Mission radius and endurance are frequent KPPs on Operational Requirements 

Documents for military aircraft acquisitions.  In fact, Figure 3 from Chapter I of this 

thesis registers mission radius as a KPP for every recent military aircraft acquisition 

program listed.  Mission radius for a particular aircraft consists of that aircraft carrying a 

specified payload a specified distance (combat radius).  Endurance for a particular 

aircraft consists of that aircraft carrying a specified payload for specified period of time at 

a specified altitude (on-station endurance).   

This thesis examines seven different aircraft (AH-1W Cobra, AH-64A Apache, 

CH-53E Super Stallion, F-14A Tomcat, F/A-18 Hornet, HH-60H Seahawk and SH-60B 

Seahawk) all flying notional mission profiles meeting the requirements of MIL-P-2203 in 

which relationships between fuel efficiency and the factors combat radius, payload and 

on-station endurance are scrutinized.  The resulting data analysis demonstrates that these 

relationships are strong.  Consequently, any requirement to include fuel efficiency as a 

KPP is simply a duplication of effort.   

The use of KPPs in an Operational Requirements Document should be kept to a 

minimum.  The CJCS Instruction 3170.01B recommends no more than eight KPPs for 

any single acquisition program.  The addition of a fuel efficiency KPP will not help the 

decision-maker determine a better alternative between competing airframes.  Clearly, for 

a given fuel capacity, the airframe with the most fuel-efficient engine(s) is determined by 

the factors mission radius and/or endurance.  The analysis in Chapter IV of this thesis 

proves the existence of these relationships and that these relationships are strong. 

A. SURROGATES FOR FUEL EFFICIENCY 

The issue of surrogates for fuel efficiency such as combat radius, payload and 

endurance are considered by the Defense Science Board report "More Capable 

Warfighting Through Reduced Fuel Burden” [DSB 2001], however they conclude that 

these are "weak" substitutes.  In fact one of the authors stated while an F/A-18 could have 

a greater combat radius with a centerline tank, it is "much less fuel-efficient".  Analysis 

using the Java model developed in this thesis does not support this premise.   
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Figure 41 is a graph of fuel consumption rate versus combat radius for sixty 

different configurations of the F/A-18C all flying the exact same mission profile 

described by TestHornet2 (see Figure 28).  For the first thirty configurations (config00 

through config29) the centerline weapon station (station 5) is empty.  The second thirty 

configurations (config30 through config59) are exactly the same as the first thirty 

configurations except that the centerline weapon station has a centerline 330-gallon fuel 

tank.  As shown in Figure 41, essentially the combat radius shifts to the right.  In fact, the 

overall average increase in combat radius is approximately 36% and the overall average 

increase in fuel consumption rate is less than 1%.  One is likely to conclude that the 

increase in combat radius is well worth the insignificant increase in fuel consumption. 

 
Figure 43.   Effect of Additional Centerline Tank on F/A-18C Combat Radius 

 
B. A MODEL FOR LOGISTICS PLANNING FACTORS 

The Defense Science Board enumerated several shortcomings within DoD that do 

not properly account for the benefits of more fuel-efficient platforms.  To the ir credit, 
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currently there are a lack of analytical tools within DoD that can be used to accurately 

reveal opportunities to improve fuel efficiency of weapons platforms.  The Operations 

Research Department at the Naval Postgraduate School in Monterey, California has 

sponsored much research involving the flow of fuel in different regional CINC Areas of 

Responsibility (AORs) such as United States Central Command (CENTCOM) and 

United States Pacific Command (PACOM ) among others.  Recent thesis research has 

focused on the ability to meet the fuel demand for a Major Regional Contingency (MRC) 

[Iliakis 2002, Cha 2002, Devlin 2001, Noble 1999; et al].  There may be a need to 

develop tools for the logistics planning factors for the intra-theater fuel demand for a 

given MRC or Operational Plan.  In other words - we may be able to use network 

analysis to find weaknesses within a given fuel distribution in-theater for a given demand, 

but is there a way to know what peak demand might look like?  It is hoped that the 

methodology employed in the development of the Java model used in this thesis 

(Aircraft) might prove to be useful in the development of logistics planning factors for 

the development of just such demand levels. 

Furthermore the Aircraft Java model could also be used in the progress of current 

and future DoD acquisitions and doctrine.  The application of a similar model to current 

developmental warfare doctrine such as the U.S. Marine Corps’ “Ship To Objective 

Maneuver” (STOM) could be useful in developing logistics planning factors for 

programs like the MV-22 Osprey and the Joint Strike Fighter, to name a few. 
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APPENDIX A.  STANDARD ATMOSPHERE 

ICAO Standard Atmospheric Properties       
 
Standard Sea Level Conditions:       
Temperature: 15 Degrees Centigrade       
Pressure: 29.921 inches Hg       
Density: 0.0023769 slugs / ft3        
Speed of Sound: 661.7 knots       
       
Altitude Density Temperature Speed of 
  (feet)  Ratio (σ) (°C)  Sound (knots) 
         0  1.0000  15.00  661.7 
  1,000  0.9711  13.01  659.5 
  2,000  0.9428  11.05  657.2 
  3,000  0.9151  9.07  654.9 
  4,000  0.8881  7.08  652.6 
  5,000  0.8617  5.09  650.3 
  6,000  0.8359  2.99  647.9 
  7,000  0.8109  1.15  645.6 
  8,000  0.7860  -0.84  643.3 
  9,000  0.7620  -2.83  640.9 
10,000  0.7385  -4.79  638.6 
11,000  0.7157  -6.77  636.2 
12,000  0.6933  -8.76  633.9 
13,000  0.6715  -10.72  631.5 
14,000  0.6502  -12.71  629.0 
15,000  0.6295  -14.69  626.0 
16,000  0.6092  -16.65  624.2 
17,000  0.5895  -18.64  621.8 
18,000  0.5702  -20.60  619.4 
19,000  0.5514  -22.58  617.0 
20,000  0.5332  -24.57  614.6 
21,000  0.5153  -26.53  612.1 
22,000  0.4980  -28.52  609.6 
23,000  0.4811  -30.50  607.1 
24,000  0.4646  -32.46  604.6 
25,000  0.4486  -35.89  602.1 
26,000  0.4330  -36.41  599.6 
27,000  0.4178  -38.40  597.1 
28,000  0.4030  -40.38  594.6 
29,000  0.3887  -42.34  592.1 
30,000  0.3747  -44.33  589.5 
31,000  0.3611  -46.29  586.9 
32,000  0.3479  -48.27  584.4 
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Altitude Density Temperature Speed of 
  (feet)  Ratio (σ) (°C)  Sound (kts) 
 
33,000  0.3351  -50.23  581.8 
34,000  0.3227  -52.22  579.2 
35,000  0.3106  -54.18  576.6 
36,000  0.2988  -56.16  574.0 
36,089  0.2976  -56.45  573.7 
37,000  0.2852  -56.45  573.7 
38,000  0.2719  -56.45  573.7 
39,000  0.2592  -56.45  573.7 
40,000  0.2471  -56.45  573.7 
41,000  0.2355  -56.45  573.7 
42,000  0.2245  -56.45  573.7 
43,000  0.2140  -56.45  573.7 
44,000  0.2040  -56.45  573.7 
45,000  0.1945  -56.45  573.7 
46,000  0.1856  -56.45  573.7 
47,000  0.1767  -56.45  573.7 
48,000  0.1685  -56.45  573.7 
49,000  0.1606  -56.45  573.7 
50,000  0.1531  -56.45  573.7 
52,000  0.1391  -56.45  573.7 
54,000  0.1264  -56.45  573.7 
56,000  0.1149  -56.45  573.7 
58,000  0.1044  -56.45  573.7 
60,000  0.0949  -56.45  573.7 
62,000  0.0863  -56.45  573.7 
64,000  0.0784  -56.45  573.7 
66,000  0.0713  -56.45  573.7 
68,000  0.0648  -56.45  573.7 
70,000  0.0589  -56.45  573.7 
72,000  0.0535  -56.45  573.7 
74,000  0.0486  -56.45  573.7 
76,000  0.0442  -56.45  573.7 
78,000  0.0402  -56.45  573.7 
80,000  0.0365  -56.45  573.7 
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APPENDIX B.  AIRCRAFT CLASS JAVADOC CONSTRUCTOR 
AND METHOD SUMMARIES 

A. INTERFACE AIRCRAFT 

 
public interface Aircraft 

An interface for use in aircraft fuel consumption modeling.  

The functionality is the ability to determine fuel consumption rates for aircraft in various 
mission profiles.  

 

Method Summary 
 double[] climb(double climbTo)  

          Returns the distance traveled over ground, time elapsed, and 
fuel consumed during a climb flight evolution. 

 double[] cruise(double distance)  
          Returns the distance traveled over ground, time elapsed, and 
fuel consumed during a cruise flight evolution. 

 void descend(double descendTo)  
          This is a void method which simply changes the aircraft  
altitude. 

 double getClimbDist(double alt)  
          Returns the distance traveled over ground during a climb to the 
specified altitude (alt). 

 double getClimbFuel(double alt)  
          Returns the fuel consumed during a climb to the specified 
altitude (alt). 

 double getClimbTime(double alt)  
          Returns the time elapsed during a climb to the specified altitude 
(alt). 

 double getCurrentAlt()  
          Returns altitude (the current altitude of the aircraft). 

 double getCurrentGS()  
          Returns groundSpeed (the current speed over ground of the 
aircraft - equal to True Air Speed). 

 double getCurrentGW()  
          Returns grossWt (the current gross weight of the aircraft). 

 double[] getLevelFltPerf(double alt)  
          Returns the array of Maximum Endurance Airspeed (Vme), 
Maximum Endurance Fuel Flow (FFme), Maximum Range Airspeed 



70 

(Vmr), Maximum Range Fuel Flow (FFmr), Maximum Continuous 
Power Airspeed (Vmcp), and Maximum Continuous Power Fuel 
Flow (FFmcp). 

 double getSurfTemp()  
          Returns surfTemp (surface temperature at takeoff airfield) 
instance variable. 

 double interpolate(double lower, double percent, 
double upper)  
          Returns the interpolated value between the lower and upper 
doubles. 

 double[] loiter(double time)  
          Returns the distance traveled over ground, time elapsed, and 
fuel consumed during a loiter flight evolution. 

 void setGrossWt(double inputWt)  
          Sets aircraft grossWt (gross weight of aircraft) instance 
variable. 

 double[] speedyDist(double distance)  
          Returns the distance traveled over ground, time elapsed, and 
fuel consumed during a speedy flight evolution where distance over 
ground is the method argument. 

 double[] speedyTime(double time)  
          Returns the distance traveled over ground, time elapsed, and 
fuel consumed during a speedy flight evolution where time elapsed is 
the method argument 
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B . CLASS AH1W 

 

All Implemented Interfaces:  
Aircraft  

 
public class AH1W  
extends java.lang.Object  
implements Aircraft 

A class for use in AH-1W Cobra Helicopter fuel consumption modeling.  

The functionality is the ability to determine fuel consumption rates for the AH-1W Cobra 
Helicopter in various mission profiles. The AH-1W Cobra is an all-weather attack 
helicopter capable of carrying multiple payload combinations of air-to-ground and air-to-
air weapons.  

 

Constructor Summary 
AH1W(double freeAirTemp, double takeOffWeight, double fieldElev, 
double drag)  
          Constructor arguments consist of free air temperature at takeoff field (assumes 
Standard Atmospheric properties), total aircraft weight at takeoff (includes aircraft basic 
weight + crew weight + fuel weight + payload weight), field elevation at takeoff 
(measured from sea level), and total drag effect (computed per Paragraph 28.2 of 
NAVAIR 01-H1AAC-1 AH-1W NATOPS Manual). 

 

   

Method Summary 
 double[] climb(double climbTo)  

          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a climb flight evolution. 

 double[] cruise(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a cruise flight evolution. 

 void descend(double descendTo)  
          This is a void method which simply changes the aircraft altitude. 

 double getClimbDist(double alt)  
          Returns the corresponding distance-travelled- in-climb for a given 
index and surface temperature from the AH-1W Cobra NATOPS Manual 
(NAVAIR 01-H1AAC-1) Figure 27-1 (top). 

 double getClimbFuel(double alt)  
          Returns the corresponding fuel-used-in-climb for a given index and 
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surface temperature from the AH-1W Cobra NATOPS Manual (NAVAIR 
01-H1AAC-1) Figure 27-1 (top). 

 double getClimbTime(double alt)  
          Returns the corresponding time-to-climb for a given index and surface 
temperature from the AH-1W Cobra NATOPS Manual (NAVAIR 01-
H1AAC-1) Figure 27-1 (top). 

 double getClimbX(double alt)  
          Returns the corresponding index for use in the time-to-climb, fuel-
used- in-climb, and distance-travelled- in-climb charts from the AH-1W Cobra 
NATOPS Manual (NAVAIR 01-H1AAC-1) Figure 27-1 (top). 

 double getCurrentAlt()  
          Returns the AH-1W helicopter current altitude. 

 double getCurrentGS()  
          Returns the AH-1W helicopter current speed over ground. 

 double getCurrentGW()  
          Returns AH-1W helicopter gross weight. 

 double[] getEightKMnus10ToPlus10Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -10 deg C and +10 deg C at 8,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getEightKMnus30ToMnus10Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -30 deg C and -10 deg C at 8,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getEightKPlus10ToPlus35Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between +10 deg C and +35 deg C at 8,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getFourKfMnus05ToPlus20Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -5 deg C and +20 deg C at 4,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 
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 double[] getFourKfMnus30ToMnus05Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -30 deg C and -5 deg C at 4,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getFourKfPlus20ToPlus45Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between +20 deg C and +45 deg C at 4,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getLevelFltPerf(double alt)  
          Returns the array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for the aircraft 
interpolated for the current outside air temperature and altitude and gross 
weight of aircraft. 

 double[] getSeaLvlMnus25ToPlus05Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -25 deg C and +5 deg C at sea level from Figure 28-1 
of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getSeaLvlPlus05ToPlus25Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between +5 deg C and +25 deg C at sea level from Figure 28-1 
of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getSeaLvlPlus25ToPlus50Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between +25 deg C and +50 deg C at sea level from Figure 28-
1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getSixKftMnus10ToPlus15Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
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range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -10 deg C and +15 deg C at 6,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getSixKftMnus30ToMnus10Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -30 deg C and -10 deg C at 6,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getSixKftPlus15ToPlus35Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between +15 deg C and +35 deg C at 6,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double getSurfTemp()  
          Returns surface temperature at takeoff airfield. 

 int getSurfTempRow()  
          Returns the matrix row corresponding to the temperature at altitude for 
use in the time-to-climb, fuel-used- in-climb, and distance-travelled- in-climb 
charts from the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1) 
Figure 27-1 (top). 

 double[] getTenKftMnus15ToPlus05Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -15 deg C and +5 deg C at 10,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getTenKftMnus35ToMnus15Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -35 deg C and -15 deg C at 10,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getTenKftPlus05ToPlus30Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between +5 deg C and +30 deg C at 10,000 ft MSL from Figure 
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28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 
 double[] getTwoKftMnus30ToPlus00Parameters(double alt, double oAT)  

          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between -30 deg C and +0 deg C at 2,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getTwoKftPlus00ToPlus20Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between +0 deg C and +20 deg C at 2,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double[] getTwoKftPlus20ToPlus45Parameters(double alt, double oAT)  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperatures between +20 deg C and +45 deg C at 2,000 ft MSL from Figure 
28-1 of the AH-1W Cobra NATOPS Manual (NAVAIR 01-H1AAC-1). 

 double interpolate(double lower, double percent, double upper)  
          A general interpolation method used for reading various flight 
performance matrices within this class. 

 double[] loiter(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a loiter flight evolution. 

 void setDragEffect(double dragTotal)  
          Sets aircraft drag effect for the AH-1W helicopter. 

 void setGrossWt(double inputWt)  
          Sets aircraft gross weight. 

 double[] speedyDist(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where distance over ground is the 
method argument. 

 double[] speedyTime(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where time elapsed is the method 
argument. 
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C. CLASS AH64A 

 

All Implemented Interfaces:  
Aircraft  

 
public class AH64A  
extends java.lang.Object  
implements Aircraft 

A class for use in AH-64A Apache Helicopter fuel consumption modeling. 

The functionality is the ability to determine fuel consumption rates for the AH-64A 
Apache Helicopter in various mission profiles.  The AH-64A Apache is an all-weather 
attack helicopter used by the U.S. Army, capable of carrying multiple payload 
combinations of air-to-ground and air-to-air weapons.  

 

Constructor Summary 
AH64A(double freeAirTemp, double takeOffWeight, double fieldElev, 
double drag)  
          Constructor arguments consist of free air temperature at takeoff field (assumes 
Standard Atmospheric properties), total aircraft weight at takeoff (includes aircraft basic 
weight + crew weight + fuel weight + payload weight), field elevation at takeoff airfield 
(measured from sea level), and total drag effect (computed per Figure 7-60 of TM 55-
1520-238-10 Technical Manual). 

 

   

Method Summary 
 double[] climb(double climbTo)  

          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a climb flight evolution. 

 double[] cruise(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a cruise flight evolution. 

 void descend(double descendTo)  
          This is a void method which simply changes the aircraft altitude. 

 double getClimbDist(double alt)  
          Returns the corresponding distance-travelled- in-climb for a given 
index and surface temperature from the AH-64A Apache Technical Manual 
(TM 55-1520-238-10) Figure 7-63 (top). 

 double getClimbFuel(double alt)  
          Returns the corresponding fuel-used-in-climb for a given index and 
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surface temperature from the AH-64A Apache Technical Manual (TM 55-
1520-238-10) Figure 7-63 (top). 

 double getClimbTime(double alt)  
          Returns the corresponding time-to-climb for a given index and surface 
temperature from the AH-64A Apache Technical Manual (TM 55-1520-238-
10) Figure 7-63 (top). 

 double getClimbX(double alt)  
          Returns the corresponding index for use in the time-to-climb, fuel-
used- in-climb, and distance-travelled- in-climb charts from the AH-64A 
Apache Technical Manual (TM 55-1520-238-10) Figure 7-63 (top). 

 double getCurrentAlt()  
          Returns the AH-64A helicopter current altitude. 

 double getCurrentGS()  
          Returns the AH-64A helicopter current speed over ground. 

 double getCurrentGW()  
          Returns AH-64A helicopter gross weight. 

 double[] getEightKMnus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -10 deg C at 8,000 ft from Figure 7-36 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getEightKMnus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -20 deg C at 8,000 ft from Figure 7-35 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getEightKMnus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -30 deg C at 8,000 ft from Figure 7-35 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getEightKMnus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -40 deg C at 8,000 ft from Figure 7-34 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 
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 double[] getEightKMnus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -50 deg C at 8,000 ft from Figure 7-34 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getEightKPlus00Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature 0 deg C at 8,000 ft from Figure 7-36 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getEightKPlus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +10 deg C at 8,000 ft from Figure 7-37 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getEightKPlus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +20 deg C at 8,000 ft from Figure 7-37 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getEightKPlus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +30 deg C at 8,000 ft from Figure 7-38 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getEightKPlus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +40 deg C at 8,000 ft from Figure 7-38 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfMnus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
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range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -10 deg C at 4,000 ft from Figure 7-24 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfMnus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -20 deg C at 4,000 ft from Figure 7-24 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfMnus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -30 deg C at 4,000 ft from Figure 7-23 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfMnus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -40 deg C at 4,000 ft from Figure 7-23 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfMnus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -50 deg C at 4,000 ft from Figure 7-22 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfPlus00Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature 0 deg C at 4,000 ft from Figure 7-25 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfPlus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +10 deg C at 4,000 ft from Figure 7-25 of the AH-64A Apache 
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Technical Manual (TM 55-1520-238-10). 
 double[] getFourKfPlus20Parameters()  

          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +20 deg C at 4,000 ft from Figure 7-26 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfPlus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +30 deg C at 4,000 ft from Figure 7-26 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfPlus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +40 deg C at 4,000 ft from Figure 7-27 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getFourKfPlus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +50 deg C at 4,000 ft from Figure 7-27 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getLevelFltPerf(double alt)  
          Returns the array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for the aircraft 
interpolated for the current outside air temperature and altitude and gross 
weight of aircraft. 

 double[] getSeaLvlMnus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -10 deg C at sea level from Figure 7-10 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlMnus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
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endurance fue l flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -20 deg C at sea level from Figure 7-10 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlMnus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -30 deg C at sea level from Figure 7-9 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlMnus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -40 deg C at sea level from Figure 7-9 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlMnus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -50 deg C at sea level from Figure 7-8 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlPlus00Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature 0 deg C at sea level from Figure 7-11 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlPlus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +10 deg C at sea level from Figure 7-11 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlPlus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
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temperature +20 deg C at sea level from Figure 7-12 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlPlus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +30 deg C at sea level from Figure 7-12 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlPlus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +40 deg C at sea level from Figure 7-13 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSeaLvlPlus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +50 deg C at sea level from Figure 7-13 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftMnus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -10 deg C at 6,000 ft from Figure 7-31 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftMnus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -20 deg C at 6,000 ft from Figure 7-30 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftMnus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -30 deg C at 6,000 ft from Figure 7-30 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftMnus40Parameters()  
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          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -40 deg C at 6,000 ft from Figure 7-29 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftMnus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -50 deg C at 6,000 ft from Figure 7-29 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftPlus00Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature 0 deg C at 6,000 ft from Figure 7-31 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftPlus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +10 deg C at 6,000 ft from Figure 7-32 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftPlus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +20 deg C at 6,000 ft from Figure 7-32 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftPlus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +30 deg C at 6,000 ft from Figure 7-33 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getSixKftPlus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
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maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +40 deg C at 6,000 ft from Figure 7-33 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double getSurfTemp()  
          Returns surface temperature at takeoff airfield. 

 int getSurfTempRow()  
          Returns the matrix row corresponding to the temperature at altitude for 
use in the time-to-climb, fuel-used- in-climb, and distance-travelled- in-climb 
charts from the AH-64A Apache Technical Manual (TM 55-1520-238-10) 
Figure 7-63 (top). 

 double[] getTenKftMnus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -10 deg C at 10,000 ft from Figure 7-41 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTenKftMnus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -20 deg C at 10,000 ft from Figure 7-40 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTenKftMnus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -30 deg C at 10,000 ft from Figure 7-40 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTenKftMnus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -40 deg C at 10,000 ft from Figure 7-39 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTenKftMnus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -50 deg C at 10,000 ft from Figure 7-39 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 
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 double[] getTenKftPlus00Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature 0 deg C at 10,000 ft from Figure 7-41 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTenKftPlus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +10 deg C at 10,000 ft from Figure 7-42 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTenKftPlus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +20 deg C at 10,000 ft from Figure 7-42 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTenKftPlus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +30 deg C at 10,000 ft from Figure 7-43 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTenKftPlus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +40 deg C at 10,000 ft from Figure 7-44 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftMnus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -10 deg C at 2,000 ft from Figure 7-17 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftMnus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
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range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -20 deg C at 2,000 ft from Figure 7-17 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftMnus30Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -30 deg C at 2,000 ft from Figure 7-16 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftMnus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -40 deg C at 2,000 ft from Figure 7-16 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftMnus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature -50 deg C at 2,000 ft from Figure 7-15 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftPlus00Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature 0 deg C at 2,000 ft from Figure 7-18 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftPlus10Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +10 deg C at 2,000 ft from Figure 7-18 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftPlus20Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +20 deg C at 2,000 ft from Figure 7-19 of the AH-64A Apache 
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Technical Manual (TM 55-1520-238-10). 
 double[] getTwoKftPlus30Parameters()  

          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +30 deg C at 2,000 ft from Figure 7-19 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftPlus40Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +40 deg C at 2,000 ft from Figure 7-20 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double[] getTwoKftPlus50Parameters()  
          Returns an array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for outside air 
temperature +50 deg C at 2,000 ft from Figure 7-20 of the AH-64A Apache 
Technical Manual (TM 55-1520-238-10). 

 double interpolate(double lower, double percent, double upper)  
          A general interpolation method used for reading various flight 
performance matrices within this class. 

 double[] loiter(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a loiter flight evolution. 

 void setDragFactor(double dragNum)  
          Sets aircraft drag factor for the AH-64A helicopter. 

 void setGrossWt(double weight)  
          Sets aircraft gross weight. 

 double[] speedyDist(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where distance over ground is the 
method argument. 

 double[] speedyTime(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where time elapsed is the method 
argument. 
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D. CLASS CH53E 

All Implemented Interfaces:  
Aircraft  

 
public class CH53E  
extends java.lang.Object  
implements Aircraft 

A class for use in CH-53E Super Stallion Helicopter fuel consumption modeling.  

The functionality is the ability to determine fuel consumption rates for the CH-53E Super 
Stallion Helicopter in various mission profiles. The CH-53E Super Stallion is a heavy lift 
helicopter used by the U.S. Marine Corps, capable of carrying various external cargo 
payloads.  

 

Constructor Summary 
CH53E(double outsideAirTemp, double takeOffWeight, double fieldElev)  
          Constructor arguments consist of free air temperature at takeoff field (assumes 
Standard Atmospheric properties), total aircraft weight at takeoff (includes aircraft basic 
weight + crew weight + fuel weight + payload weight), and field elevation at takeoff 
airfield (measured from sea level). 

 

   

Method Summary 
 void ascend(double ascendTo)  

          This is a void method which simply changes the aircraft altitude. 
 double[] climb(double climbTo)  

          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a climb flight evolution. 

 double[] cruise(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a cruise flight evolution. 

 void descend(double descendTo)  
          This is a void method which simply changes the aircraft altitude. 

 double get3EngFFme(double alt)  
          Returns the corresponding maximum continuous power fuel flow value 
based outside aircraft gross weight and altitude from the CH-53E NATOPS 
Manual (NAVAIR A1-H53BE-NFM-000) Figures 23-1 (assumes Standard 
Atmosphere). 
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 double get3EngMnus40SRmr(double alt)  
          Returns the corresponding specific range value based on aircraft gross 
weight and altitude for standard atmospheric conditions minus 40 deg C from 
the CH-53E NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figures 22-
3. 

 double get3EngMnus40Vmr(double alt)  
          Returns the corresponding maximum range airspeed value based on 
aircraft gross weight and altitude for standard atmospheric conditions minus 
40 deg C from the CH-53E NATOPS Manual (NAVAIR A1-H53BE-NFM-
000) Figures 22-3. 

 double get3EngPlus40SRmr(double alt)  
          Returns the corresponding specific range value based on aircraft gross 
weight and altitude for standard atmospheric conditions plus 40 deg C from 
the CH-53E NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figures 22-
1. 

 double get3EngPlus40Vmr(double alt)  
          Returns the corresponding maximum range airspeed value based on 
aircraft gross weight and altitude for standard atmospheric conditions plus 40 
deg C from the CH-53E NATOPS Manual (NAVAIR A1-H53BE-NFM-000) 
Figures 22-1. 

 double get3EngSRmcp(double alt)  
          Returns the corresponding maximum continuous power specific range 
value based outside aircraft gross weight and altitude from the CH-53E 
NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figures 22-4 (assumes 
Standard Atmosphere). 

 double get3EngSRmr(double alt)  
          Returns the corresponding specific range value based on outside air 
temperature from the CH-53E NATOPS Manual (NAVAIR A1-H53BE-
NFM-000) Figures 22-1, 22-2 & 22-3. 

 double get3EngStdDaySRmr(double alt)  
          Returns the corresponding specific range value based on aircraft gross 
weight and altitude for standard atmospheric conditions from the CH-53E 
NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figures 22-2. 

 double get3EngStdDayVmr(double alt)  
          Returns the corresponding maximum range airspeed value based on 
aircraft gross weight and altitude for standard atmospheric conditions from 
the CH-53E NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figures 22-
2. 

 double get3EngVmcp(double alt)  
          Returns the corresponding maximum continuous power airspeed value 
based outside aircraft gross weight and altitude from the CH-53E NATOPS 
Manual (NAVAIR A1-H53BE-NFM-000) Figures 22-4 (assumes Standard 
Atmosphere). 

 double get3EngVme(double alt)  
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          Returns the corresponding maximum endurance airspeed value based 
outside aircraft gross weight and altitude from the CH-53E NATOPS Manual 
(NAVAIR A1-H53BE-NFM-000) Figures 23-1 (assumes Standard 
Atmosphere). 

 double get3EngVmr(double alt)  
          Returns the corresponding maximum range airspeed value based 
outside air temperature from the CH-53E NATOPS Manual (NAVAIR A1-
H53BE-NFM-000) Figures 22-1, 22-2 & 22-3. 

 double getClimbDist(double alt)  
          Returns the corresponding distance-travelled- in-climb based on outside 
air temperature from the CH-53E NATOPS Manual (NAVAIR A1-H53BE-
NFM-000) Figures 21-1 and 21-2. 

 double getClimbFuel(double alt)  
          Returns the corresponding fuel-used-in-climb based on outside air 
temperature from the CH-53E NATOPS Manual (NAVAIR A1-H53BE-
NFM-000) Figures 21-1 and 21-2. 

 double getClimbTime(double alt)  
          Returns the corresponding time-to-climb based on outside air 
temperature from the CH-53E NATOPS Manual (NAVAIR A1-H53BE-
NFM-000) Figures 21-1 and 21-2. 

 double getColdClimbDistX(double alt)  
          Returns the corresponding index for use in the distance-travelled- in-
climb chart when outside air temperature is less than 0 deg C from the CH-
53E NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-1. 

 double getColdClimbFuelX(double alt)  
          Returns the corresponding index for use in the fuel-used- in-climb chart 
when outside air temperature is less than 0 deg C from the CH-53E NATOPS 
Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-1. 

 double getColdClimbTimeX(double alt)  
          Returns the corresponding index for use in the time-to-climb chart 
when outside air temperature is less than 0 deg C from the CH-53E NATOPS 
Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-1. 

 double getColdDayClimbDist(double coldX)  
          Returns the corresponding distance-travelled- in-climb for a given 
index and surface temperature (less than 0 deg C) from the CH-53E 
NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-1. 

 double getColdDayClimbFuel(double coldX)  
          Returns the corresponding fuel-used-in-climb for a given index and 
surface temperature (less than 0 deg C) from the CH-53E NATOPS Manual 
(NAVAIR A1-H53BE-NFM-000) Figure 21-1. 

 double getColdDayClimbTime(double coldX)  
          Returns the corresponding time-to-climb for a given index and surface 
temperature (less than 0 deg C) from the CH-53E NATOPS Manual 
(NAVAIR A1-H53BE-NFM-000) Figure 21-1. 
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 int getColdSurfTempCol()  
          Returns the matrix column corresponding to the temperature at takeoff 
for use in the time-to-climb, fuel-used-in- climb, and distance-travelled- in-
climb charts from the CH-53E NATOPS Manual (NAVAIR A1-H53BE-
NFM-000) Figure 21-1. 

 double getCurrentAlt()  
          Returns the CH-53E helicopter current altitude. 

 double getCurrentGS()  
          Returns the CH-53E helicopter current speed over ground. 

 double getCurrentGW()  
          Returns CH-53E helicopter gross weight. 

 double getHoverFuelFlow(double alt)  
          Returns hover performance fuel flow for the CH-53E "out-of-ground-
effect" hover evolution from CH-53E NATOPS Manual (NAVAIR A1-
H53BE-NFM-000) Figure 23-5. 

 double[] getLevelFltPerf(double alt)  
          Returns the array of maximum endurance airspeed (Vme), maximum 
endurance fuel flow (FFme), maximum range airspeed (Vmr), maximum 
range fuel flow (FFmr), maximum continuous power airspeed (Vmcp), and 
maximum continuous power fuel flow (FFmcp) values for the aircraft 
interpolated for the current outside air temperature and altitude and gross 
weight of aircraft. 

 double getSigma(double alt)  
          Returns the corresponding value of sigma (ratio of Speed of Sound at 
Altitude to Speed of Sound at Sea Level)for a constant altitude from the 
AIRCRAFT ENGINE DESIGN (Mattingly, Jack K. 

 double getSurfTemp()  
          Returns surface temperature at takeoff airfield. 

 double[] getVERTREPperf(double alt, double dragArea)  
          Returns an array of external cargo airspeed (Vext) and external cargo 
fuel flow (FFext) for the CH-53E carrying an external payload. 

 double getWarmClimbDistX(double alt)  
          Returns the corresponding index for use in the distance-travelled- in-
climb chart when outside air temperature is greater than 0 deg C from the 
CH-53E NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-2. 

 double getWarmClimbFuelX(double alt)  
          Returns the corresponding index for use in the fuel-used- in-climb chart 
when outside air temperature is greater than 0 deg C from the CH-53E 
NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-2. 

 double getWarmClimbTimeX(double alt)  
          Returns the corresponding index for use in the time-to-climb chart 
when outside air temperature is greater than 0 deg C from the CH-53E 
NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-1. 

 double getWarmDayClimbDist(double warmX)  
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          Returns the corresponding distance-travelled- in-climb for a given 
index and surface temperature (greater than 0 deg C) from the CH-53E 
NATOPS Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-2. 

 double getWarmDayClimbFuel(double warmX)  
          Returns the corresponding fuel-used-in-climb for a given index and 
surface temperature (greater than 0 deg C) from the CH-53E NATOPS 
Manual (NAVAIR A1-H53BE-NFM-000) Figure 21-2. 

 double getWarmDayClimbTime(double warmX)  
          Returns the corresponding time-to-climb for a given index and surface 
temperature (greater than 0 deg C) from the CH-53E NATOPS Manual 
(NAVAIR A1-H53BE-NFM-000) Figure 21-2. 

 int getWarmSurfTempCol()  
          Returns the matrix column corresponding to the temperature at takeoff 
for use in the time-to-climb, fuel-used-in- climb, and distance-travelled- in-
climb charts from the CH-53E NATOPS Manual (NAVAIR A1-H53BE-
NFM-000) Figure 21-2 for warm day conditions (outside air temperature 
greater than 0 deg C). 

 double[] hover(double time)  
          Returns the distance traveled over ground (always zero), time elapsed, 
and fuel consumed during a hover flight evolution where time elapsed is the 
method argument. 

 double interpolate(double lower, double percent, double upper)  
          A general interpolation method used for reading various flight 
performance matrices within this class. 

 double[] loiter(double time)  
          Returns the distance traveled over ground, time elapsed, and fue l 
consumed during a loiter flight evolution. 

 void pickUpLoad(double cargo)  
          This is a void method which simply increases the aircraft gross weight 
by the weight of the external cargo load. 

 void releaseLoad(double cargo)  
          This is a void method which simply decreases the aircraft gross weight 
by the weight of the external cargo load. 

 void setGrossWt(double weight)  
          Sets aircraft gross weight. 

 double[] speedyDist(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where distance over ground is the 
method argument. 

 double[] speedyTime(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where time elapsed is the method 
argument. 

 double[] vertrep(double distance, double dragA)  
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          Returns the distance traveled ove r ground, time elapsed, and fuel 
consumed during an external cargo flight evolution where distance travelled 
and external cargo drag area are the method arguments. 

 
E. CLASS F14AStd 

All Implemented Interfaces:  
Aircraft  

 
public class F14AStd  
extends java.lang.Object  
implements Aircraft 

A class for use in F-14A Tomcat fuel consumption modeling.  
 
The functionality is the ability to determine fuel consumption rates for the F-14A Tomcat 
in various mission profiles. The F-14A Tomcat is an fighter (and attack) aircraft used by 
the U.S. Navy, capable of carrying multiple combinations of weapon payloads.  

 

Constructor Summary 
F14AStd(double outsideAirTemp, double takeOffWeight, double fieldElev, 
double drag)  
          Constructor arguments consist of outside air temperature at takeoff field (assumes 
Standard Atmospheric properties), total aircraft weight at takeoff (includes aircraft basic 
weight + crew weight + fuel weight + payload weight), field elevation at takeoff airfield 
(measured from sea level), and total drag index (computed from NWP 3-22.5-
F14A/B/D, Volume III Figure 1-8). 

 

   

Method Summary 
 double[] climb(double climbTo)  

          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a climb flight evolution. 

 double convertCAStoTAS(double alt, double cAS)  
          Returns the true airspeed converted from calibrated airspeed. 

 double[] cruise(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a cruise flight evolution. 

 void descend(double descendTo)  
          This is a void method which simply changes the aircraft altitude. 

 double getClimbDist(double alt)  
          Returns the corresponding distance-travelled- in-climb based on gross 
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weight, altitude, and drag index from the F-14A NATOPS Performance 
Charts (NAVAIR 01-F14AAA-1.1) Figure 3-1. 

 double getClimbFuel(double alt)  
          Returns the corresponding fuel-used-in-climb based on gross weight, 
altitude, and drag index from the F-14A NATOPS Performance Charts 
(NAVAIR 01-F14AAA-1.1) Figure 3-1. 

 double getClimbTime(double alt)  
          Returns the corresponding time-to-climb based on gross weight, 
altitude, and drag index from the F-14A NATOPS Performance Charts 
(NAVAIR 01-F14AAA-1.1) Figure 3-1. 

 double[] getCruiseParameters(double alt)  
          Returns an array of maximum range airspeed and maximum range fuel 
flow (Vmr & FFmr). 

 double getCurrentAlt()  
          Returns the F-14A current altitude. 

 double getCurrentGS()  
          Returns the F-14A current speed over ground. 

 double getCurrentGW()  
          Returns F-14A current gross weight. 

 double[] getEnduranceParameters(double alt)  
          Returns an array of maximum endurance airspeed and maximum 
endurance fuel flow (Vme & FFme). 

 double[] getLevelFltPerf(double alt)  
          Returns the array of Maximum Endurance Airspeed (Vme), Maximum 
Endurance Fuel Flow (FFme), Maximum Range Airspeed (Vmr), Maximum 
Range Fuel Flow (FFmr), Maximum Continuous Power Airspeed (Vmcp), 
and Maximum Continuous Power Fuel Flow (FFmcp). 

 double[] getMaxABparameters(double alt)  
          Returns an array of maximum afterburner airspeed and maximum 
afterburner fuel flow (Vmr & FFmr). 

 double[] getMilPwrParameters(double alt)  
          Returns an array of maximum continuous power airspeed and 
maximum continuous power fuel flow (Vmr & FFmr). 

 double getSpdSoundAtAltitude(double altitude)  
          Returns the speed of sound at altitude for use in converting mach 
number to true airspeed. 

 double getSurfTemp()  
          Returns sur face temperature at takeoff airfield. 

 double interpolate(double lower, double percent, double upper)  
          A general interpolation method used for reading various flight 
performance matrices within this class. 

 double[] loiter(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
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consumed during a loiter flight evolution. 
 void setGrossWt(double weight)  

          Sets aircraft gross weight. 
 double[] speedyDist(double distance)  

          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where distance over ground is the 
method argument. 

 double[] speedyTime(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where time elapsed is the method 
argument. 

 double[] supersonicDist(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a supersonic flight evolution where distance travelled is the 
method argument. 

 double[] supersonicTime(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a supersonic flight evolution where time elapsed is the 
method argument. 

   

F. CLASS FA18CStd 

All Implemented Interfaces:  
Aircraft  

 
public class FA18CStd  
extends java.lang.Object  
implements Aircraft 

A class for use in F/A-18C Hornet fuel consumption modeling.  

The functionality is the ability to determine fuel consumption rates for the F/A-18C 
Hornet in various mission profiles. The F/A-18C Hornet is a fighter/attack aircraft used 
by the U.S. Navy, capable of carrying multiple combinations of weapon payloads.  

 

Constructor Summary 
FA18CStd(double outsideAirTemp, double takeOffWeight, 
double fieldElev, double bSDrag, double intDragCd)  
          Constructor arguments consist of outside air temperature at takeoff field (assumes 
Standard Atmospheric properties), total aircraft weight at takeoff (includes aircraft basic 
weight + crew weight + fuel weight + payload weight), field elevation at takeoff airfield 
(measured from sea level), basic stores drag index (computed from F/A-18C NATOPS 
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Performance Charts Figure 11-2) and interference drag code (computed from F/A-18C 
NATOPS Performance Charts Figure 11-3 (NAVAIR A1-F18AC-NFM-200) ) . 

   

Method Summary 
 double[] climb(double climbTo)  

          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a climb flight evolution. 

 double[] cruise(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a cruise flight evolution. 

 void descend(double descendTo)  
          This is a void method which simply changes the aircraft altitude. 

 double getBasicStDrag()  
          Returns F/A-18C basic stores drag index. 

 double getClimbDist(double alt)  
          Returns the corresponding distance-travelled- in-climb based on gross 
weight, altitude, and drag index from the F/A-18C NATOPS Performance 
Charts (NAVAIR A1-F18AC-NFM-200) Figure 11-23. 

 double getClimbFuel(double alt)  
          Returns the corresponding fuel-used-in-climb based on gross weight, 
altitude, and drag index from the F/A-18C NATOPS Performance Charts 
(NAVAIR A1-F18AC-NFM-200) Figure 11-23. 

 double getClimbTime(double alt)  
          Returns the corresponding time-to-climb based on gross weight, 
altitude, and drag index from the F/A-18C NATOPS Performance Charts 
(NAVAIR A1-F18AC-NFM-200) Figure 11-23. 

 double getCurrentAlt()  
          Returns F/A-18C current altitude. 

 double getCurrentGS()  
          Returns F/A-18C current speed over ground. 

 double getCurrentGW()  
          Returns F/A-18C current gross weight. 

 double getDragIndex(double machNumber)  
          Returns F/A-18C total drag index - sum of the basic stores drag index 
and interference drag index (determined by the interference drag code in 
conjunction with Figure 11-4 from F/A-18C NATOPS Performance Charts 
(NAVAIR A1-F18AC-NFM-200). 

 double getIntDragCode()  
          Returns F/A-18C interference drag code. 

 double[] getLevelFltPerf(double alt)  
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          Returns the array of Maximum Endurance Airspeed (Vme), Maximum 
Endurance Fuel Flow (FFme), Maximum Range Airspeed (Vmr), Maximum 
Range Fuel Flow (FFmr), Maximum Continuous Power Airspeed (Vmcp), 
and Maximum Continuous Power Fuel Flow (FFmcp). 

 double getSpdSoundAtAltitude(double altitude)  
          Returns the speed of sound at altitude for use in converting mach 
number to true airspeed. 

 double getSurfTemp()  
          Returns surface temperature at takeoff airfield. 

 double interpolate(double lower, double percent, double upper)  
          A general interpolation method used for reading various flight 
performance matrices within this class. 

 double[] loiter(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a loiter flight evolution. 

 void setDragIndex(double machNo)  
          Sets aircraft drag index - changes as airspeed changes for some 
payload combinations. 

 void setGrossWt(double gW)  
          Sets aircraft gross weight. 

 double[] speedyDist(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where distance over ground is the 
method argument. 

 double[] speedyTime(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where time elapsed is the method 
argument. 

    

G. CLASS HH60H 

All Implemented Interfaces:  
Aircraft  

 
public class HH60H  
extends java.lang.Object  
implements Aircraft 

A class for use in HH-60H Helicopter fuel consumption modeling.  

The functionality is the ability to determine fuel consumption rates for the HH-60H 
Seahawk Helicopter in various mission profiles. The HH-60H Helicopter is a versatile 
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platform used by the U.S. Navy for Combat Search and Rescue, Naval Special Warfare 
and utility missions.  

 

Constructor Summary 
HH60H(double outsideAirTemp, double takeOffWeight, double fieldElev)  
          Constructor arguments consist of outside air temperature at takeoff field (assumes 
Standard Atmospheric properties), total aircraft weight at takeoff (includes aircraft basic 
weight + crew weight + fuel weight + payload weight), and field elevation at takeoff 
airfield (measured from sea level). 

 

   

Method Summary 
 double[] climb(double climbTo)  

          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a climb flight evolution. 

 double[] cruise(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a cruise flight evolution. 

 void descend(double descendTo)  
          This is a void method which simply changes the aircraft altitude. 

 double getClimbDist(double alt)  
          Returns the corresponding distance-travelled- in-climb for a given 
index and surface temperature from the HH-60H Seahawk NATOPS Manual 
(NAVAIR A1-H60CA-NFM-000) Figure 24-2. 

 double getClimbFuel(double alt)  
          Returns the corresponding fuel-used-in-climb for a given index and 
surface temperature from the HH-60H Seahawk NATOPS Manual 
(NAVAIR A1-H60CA-NFM-000) Figure 24-2. 

 double getClimbTime(double alt)  
          Returns the corresponding time-to-climb for a given index and surface 
temperature from the HH-60H Seahawk NATOPS Manual (NAVAIR A1-
H60CA-NFM-000) Figure 24-2. 

 double getClimbX(double alt)  
          Returns the corresponding index for use in the time-to-climb, fuel-
used- in-climb, and distance-travelled- in-climb charts from the HH-60H 
Seahawk NATOPS Manual (NAVAIR A1-H60CA-NFM-000) Figure 24-2 
(top). 

 double getCurrentAlt()  
          Returns HH-60H current altitude. 

 double getCurrentGS()  
          Returns HH-60H current speed over ground. 
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 double getCurrentGW()  
          Returns HH-60H current gross weight. 

 double[] getLevelFltPerf(double alt)  
          Returns the array of Maximum Endurance Airspeed (Vme), Maximum 
Endurance Fuel Flow (FFme), Maximum Range Airspeed (Vmr), Maximum 
Range Fuel Flow (FFmr), Maximum Continuous Power Airspeed (Vmcp), 
and Maximum Continuous Power Fuel Flow (FFmcp). 

 double getSurfTemp()  
          Returns surface temperature at takeoff airfield. 

 int getSurfTempRow()  
          Returns the matrix row corresponding to the temperature at altitude for 
use in the time-to-climb, fuel-used- in-climb, and distance-travelled- in-climb 
charts from the HH-60H Seahawk NATOPS Manual (NAVAIR A1-H60CA-
NFM-000) Figure 24-2 (top). 

 double interpolate(double lower, double percent, double upper)  
          A general interpolation method used for reading various flight 
performance matrices within this class. 

 double[] loiter(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a loiter flight evolution. 

 void setGrossWt(double weight)  
          Sets aircraft gross weight. 

 double[] speedyDist(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where distance over ground is the 
method argument. 

 double[] speedyTime(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where time elapsed is the method 
argument. 

     

H. CLASS SH60B 

All Implemented Interfaces:  
Aircraft  

 
public class SH60B  
extends java.lang.Object  
implements Aircraft 

A class for use in SH-60B Seahawk Helicopter fuel consumption modeling.  
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The functionality is the ability to determine fuel consumption rates for the SH-60B 
Seahawk Helicopter in various mission profiles.  The SH-60B Seahawk Helicopter is an 
all-purpose helicopter used by the U.S. Navy for Undersea Warfare, Anti-Ship 
Surveillance and Targeting and Search and Rescue.  

 

Constructor Summary 
SH60B(double outsideAirTemp, double takeOffWeight, double fieldElev)  
          Constructor arguments consist of outside air temperature at takeoff field (assumes 
Standard Atmospheric properties), total aircraft weight at takeoff (includes aircraft basic 
weight + crew weight + fuel weight + payload weight), and field elevation at takeoff 
airfield (measured from sea level). 

 

   

Method Summary 
 double[] climb(double climbTo)  

          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a climb flight evolution. 

 double[] cruise(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a cruise flight evolution. 

 void descend(double descendTo)  
          This is a void method which simply changes the aircraft altitude. 

 void fireAGM114()  
          This is a void method which reduces the aircraft gross weight by 160 
lbs. 

 void fireAGM119B()  
          This is a void method which reduces the aircraft gross weight by 860 
lbs. 

 double getClimbDist(double alt)  
          Returns the corresponding distance-travelled- in-climb for a given 
index and surface temperature from the SH-60B Seahawk NATOPS Manual 
(NAVAIR A1-H60BB-NFM-000) Figure 24-1. 

 double getClimbFuel(double alt)  
          Returns the corresponding fuel-used-in-climb for a given index and 
surface temperature from the SH-60B Seahawk NATOPS Manual (NAVAIR 
A1-H60BB-NFM-000) Figure 24-1. 

 double getClimbTime(double alt)  
          Returns the corresponding time-to-climb for a given index and surface 
temperature from the SH-60B Seahawk NATOPS Manual (NAVAIR A1-
H60BB-NFM-000) Figure 24-1. 

 double getClimbX(double alt)  
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          Returns the corresponding index for use in the time-to-climb, fuel-
used- in-climb, and distance-travelled- in-climb charts from the SH-60B 
Seahawk NATOPS Manual (NAVAIR A1-H60BB-NFM-000) Figure 24-1 
(top). 

 double getCurrentAlt()  
          Returns SH-60B current altitude. 

 double getCurrentGS()  
          Returns SH-60B current speed over ground. 

 double getCurrentGW()  
          Returns SH-60B current gross weight. 

 double[] getLevelFltPerf(double alt)  
          Returns the array of Maximum Endurance Airspeed (Vme), Maximum 
Endurance Fuel Flow (FFme), Maximum Range Airspeed (Vmr), Maximum 
Range Fuel Flow (FFmr), Maximum Continuous Power Airspeed (Vmcp), 
and Maximum Continuous Power Fuel Flow (FFmcp). 

 double getSurfTemp()  
          Returns surface temperature at takeoff airfield. 

 int getSurfTempRow()  
          Returns the matrix row corresponding to the temperature at altitude for 
use in the time-to-climb, fuel-used- in-climb, and distance-travelled- in-climb 
charts from the SH-60B Seahawk NATOPS Manual (NAVAIR A1-H60BB-
NFM-000) Figure 24-1 (top). 

 double interpolate(double lower, double percent, double upper)  
          A general interpolation method used for reading various flight 
performance matrices within this class. 

 double[] loiter(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a loiter flight evolution. 

 void releaseDICASS()  
          This is a void method which reduces the aircraft gross weight by 43 
lbs. 

 void releaseDIFAR()  
          This is a void method which reduces the aircraft gross weight by 33 
lbs. 

 void releaseMK46()  
          This is a void method which reduces the aircraft gross weight by 548 
lbs. 

 void releaseMK50()  
          This is a void method which reduces the aircraft gross weight by 750 
lbs. 

 void releaseVLAD()  
          This is a void method which reduces the aircraft gross weight by 33 
lbs. 
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 void setGrossWt(double weight)  
          Sets aircraft gross weight. 

 double[] speedyDist(double distance)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where distance over ground is the 
method argument. 

 double[] speedyTime(double time)  
          Returns the distance traveled over ground, time elapsed, and fuel 
consumed during a speedy flight evolution where time elapsed is the method 
argument. 
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